期刊文献+

一种基于模型的步态识别方法 被引量:16

A Gait Recognition Method Based on Body Skeletal Model
下载PDF
导出
摘要 该文提出了一种简单有效的基于人体骨骼化模型的步态识别方法。首先,对输入的步态序列自动进行背景初始化;然后分割图像中运动人体的侧面影像,并进一步细化为人体的骨骼化模型;从模型中提取人体的静态参数(如身高、步幅)以及动态参数(如运动过程中关节点的位置、肢体角度);最后,应用标准的模式分类技术对个体的身份做出识别。实验结果表明,此方法通过提取可靠的步态特征,降低了数据处理的代价,而且得到了较为良好的识别性能。 This article describes a simple and effective gait recognition method based on a skeletal model of the body.At first,the background is initialized automatically in the gait sequence.Secondly,body silhouette is segmented from the image and that is converted into a skeletal model afterwards.And then authors extract body's static and dynamic parameters such as height,stride,the position of the joint and the angle of the body etc.Finally,people can recognize different individual using all of these gait signatures by the pattern classification technology.The utility of the proposed method is illustrated using indoor video sequences in the experiments.And a good identification performance is got.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第9期88-92,共5页 Computer Engineering and Applications
基金 北京市自然科学基金项目(编号:4031004) 北京市教委科技发展项目(编号:km200310005006)
关键词 生物特征识别 步态识别 骨骼化模型 主元分析 特征步态 biometrics,gait recognition,skeletal model,Principal Component Analysis(PCA),eigengait
  • 引文网络
  • 相关文献

参考文献11

  • 1M P Murray. Gait as a total pattern of movement[J].American Journal of Physical Medicine, 1967 ;46-1:290~333
  • 2G Johansson. Visual perception of biological motion and a model for its analysis[J].Perception and Psychophysics, 1973; 14(2)
  • 3J H Yoo,M S Nixon,C J Harris. Extracting Human Gait Signatures by Body Segment Properties. Department of Electronics and Computer Science University of Southampton ,UK
  • 4J Litfle,J E Boyd. Reeognizing People by Their Gait:the Shape of Motion[J].Journal of Computer Vision Research, 1998; 1 (2): 2~32
  • 5D Cunado,M S Nixon,J N Carter. Using gait as a biometrie,via phaseweighted magnitude spectra[C].In:Leeture Notes in Computer Science Proc AVBPA'97,1997; 1206:95~102
  • 6L Lee,W E L Grimson. Gait Analysis for Recognition and Classifieafion[C].In :Proceeding of the IEEE Conference on Face and Gesture Recognition, 2002:155~161
  • 7王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 8Claudette Cedras,Mubarak Shah. A survey of motion analysis from moving light displays[C].In:Proc 1994 IEEE Conf on Computer Vision and Pattern Rec,IEEE Press, 1994:214~221
  • 9J M Nash,J N Carter,M S Nixon. Extracting moving articulated objects by evidence gathering[C].In:Proc BMVC 98,1998-09:609~618
  • 10M R Dawson.Gait Recogniton Final Report.Meng Computing 4,Department of Computing Imperial College of Science,Technology &Medicine ,London,SW7 2BZ ,2002-06

二级参考文献27

  • 1Gavrila D. The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding,1999,73(8):428-440.
  • 2Rosales R,Selaroff S. Improved Tracking of Mutiple Humans with Trajectory Prediction and Occlusion Modeling. IEEE Conf. on Computer Vision and Pattern Recognition,Workshop on the Interpretation of Visual Motion,Santa Barbara,CA,1998.
  • 3Elgammal A,Duraiswami R,Harwood D,et al. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE,2002,90(7):1151-1163.
  • 4Greengard L,Sun X. A New Version of the Fast Gauss Transform. Documenta Mathematical Extra Volume ICM,1998,3:575-584.
  • 5Elgammal A,Duraiswami R. Efficient Non-parametric Adaptive Color Modeling Using Fast Gauss Transform. CVPR 2001,Kauai,Hawaii,2001.
  • 6边肇祺 张学工.模式识别-2[M].北京:清华大学出版社,1999-12..
  • 7Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recognition,2003,36(3):585~601
  • 8Phillips J, Moon H, Rizvi S, Rause P. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104
  • 9Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Society. Boston:Kluwer Academic Publishers, 1999
  • 10Nixon M, Carter J, Cunado D, Huang P, Stevenage S. Automatic gait recognition. In: Proceedings of BIOMETRICS Personal Identification in Networked Society, 1999. 231~249

共引文献157

同被引文献161

引证文献16

二级引证文献64

;
使用帮助 返回顶部