期刊文献+

N体问题共线解的简明数值方法 被引量:2

THE CONCISE NUMERICAL ANALYSIS FOR COLLINEAR SOLUTIONS OF N-BODY PROBLEM
下载PDF
导出
摘要 研究N体问题共线解的数值方法.依照动力学和运动学原理,建立N体问题共线解所满足的条件方程,把解 微分方程组的问题转化为解非线性方程组的问题.当质量已知时,对条件方程组进行Taylor级数展开,使非线性方程组 转化为线性方程组,然后用牛顿迭代法解此方程组从而获得共线解.如果给定N体问题共线解中各质点之间的距离,那 么问题就变成求解满足这组给定轨道的质点的质量问题,此时的条件方程就是线性方程组,解此线性方程组就可以得到 答案. The numerical methods of solving the collinear N-body problem are studied in detail. By the Newton's dynamic principle and the constraint equations that the collinear N-body systems satisfy, the problem of solving the set of differential equations is transformed into that of solving the nonlinear set of equations. Given mass of each object in N-body system, the nonlinear set of equations reduces to linear one by the Taylor series expansion of the constraint equation, and its collinear is obtained by Newtonian iteration. On the other hand, given the distance between any two masses, the problem we seek becomes that of finding the masses of N-body system. In this case, the constraint equations is naturally linear set of equations, which gives the masses of N-body system. A serious of numerical solutions to the collinear N-body problem are presented for both cases above.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期54-57,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10473002 10373004) 北京师范大学青年基金资助项目(1077002) 北京师范大学本科生研究基金资助项目(127002)
关键词 N体问题 共线解 数值方法 N-body problem collinear solution numerical method
  • 相关文献

参考文献9

  • 1Corbera M, Llibre J. Periodic orbits of a collinear restricted three-body problem [J ]. Celestial Mechanics and Dynamical Astronomy, 2003,86(2): 163.
  • 2Chenciner A, Montgomery R. A remarkable periodic solution of the three-body problem in the case of equal masses[J]. Annals of Math, 2000, 52:881.
  • 3Simo C. New families of solutions in N-body problem[C]//Proceedings of European Congress of Mathematicians,Birkhauser, Boston: 2000.
  • 4Masayoshi S, Kiyotaka T. On the symmetric collinear four-body problem[J]. Publications of the Astronomical Society of Japan, 2004, 56(1) :235.
  • 5Sweatman W L. The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation [J]. Celestial Mechanics and Dynamical Astronomy,2002, 82(2) :179.
  • 6Ferrario D. Central configurations, symmetries and fixedpoints, [EB. OL]. [2004-09] http://xxx. lanl. gov/PScache/math/pdf/0204/0204198. pdf.
  • 7Andrij VUS. Integlable polynomail pstentials in N-body problems on the line [C]//Proceedings of Institute of Mathematicsof NAS of Ukraine, 2002, 43(2):765.
  • 8Bruschi M, Calogero F. Solvable and/or integrable and/or linearizable N-body problems in ordinary (three dimensional) space I [J]. Journal of Nonlinear Mathematical Physics, 2000, 7 (3): 303.
  • 9Buck G. Most smooth closed space curves contain approximate solutions of the N-body problem[J].Nature, 1998, 395:51.

同被引文献15

  • 1杨远玲,聂清香,吴晓梅,徐顺福.N体问题的几种数值算法比较[J].计算物理,2006,23(5):599-603. 被引量:7
  • 2波利亚.数学与猜想:第1卷[M].李志尧,王日爽,李心灿,译.北京:科学出版社,1985,36-63
  • 3Xie Zhifu,Zhang Shiqing.A simpler proof of regular polygon solutions of the N-body problem[J].Physics Letters,2000,A 277:156
  • 4Zhang Shiqing,Zhou Qing.Periodic solutions for planar 2N-body problems[J].Proc Amer Math Soc,2003,131:2161
  • 5Chenciner A,Montgomery R.A remarkable periodic solution of the three-body problem in the case of equal masses[J].Annals of Math,2000,52:881
  • 6Sim(o) C.New families of solutions in N-body problem[C]//Proceedings of European Congress of Mathematicians.Boston:Birkhauser,2000:101
  • 7Masayoshi S,Kiyotaka T.On the symmetric collinear four-body problem[J].Publications of the Astronomical Society of Japan,2004,56(1):235
  • 8Sweatman W L.The symmetrical one-dimensional Newtonian four-body problem:a numerical investigation[J].Celestial Mechanics and Dynamical Astronomy,2002,82(2):179
  • 9Perko L M,Walter E L.Regular polygon solutions of the N-body problem[J].Proc AMS,1985,94:301
  • 10Zhang Shiqing,Zhou Qing.Nested regular polygon solutions for planar 2N-body problems[J].Science in China Series A,2002,45(8):1053

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部