期刊文献+

分布式无源检测系统中自适应检测融合 被引量:3

Adaptive Decision Fusion for Distributed Passive Detection System
下载PDF
导出
摘要 针对在分布式多基地雷达无源检测系统中,检测概率通常未知或时变的信息不完全的检测融合问题,研究了一种在线自适应检测融合算法,该算法基于Neyman-Pearson准则,通过局部判决估计未知的每个接收站的检测概率,从而实现最优判决融合.计算机仿真结果说明了其有效性. For decision fusion in a distributed passive detection system, the probabilities of detection of each receiver may be unknown or vary with time. An on-line adaptive decision fusion algorithm is presented. The algorithm is based on Neyman-Pearson criterion. The algorithm uses local decisions to estimate the unknown probabilities of the detection of each receiver to implement an optimal decision fusion. Computer simulation results demonstrate its feasibility and effectiveness.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第3期265-267,共3页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60232010) 高校青年教师奖励基金项目
关键词 分布式检测 NEYMAN-PEARSON准则 最优判决融合 自适应算法 distributed detection Neyman-Pearson criterion optimal decision fusion adaptive algorithm
  • 相关文献

参考文献6

  • 1Chair Z, Varshney P K. Optimal data fusion in multiple sensor detection system[J]. IEEE Trans Aerosp Electron Syst, 1986,22(1):98-101.
  • 2Han Y I,Taejeong K. Randomized fusion rules can be optiaml in distributed Neyman-Pearson detectors[J]. IEEE Trans Inform Theory, 1997,43(4):1281-1288.
  • 3Naim A, Kam M. On-line estimation of probabilities for distributed Bayesian detection[J]. Automatica,1994,30(4):633-642.
  • 4Ansari N, Chen J G, Zhang Y Z. Adaptive decision fusion for unequiprobable sources[J]. IEE Proceedings on Radar Sonar and Navigation, 1997,144(3):105-111.
  • 5Mirjalily G, Luo Zhiquan. Blind adaptive decision fusion for distributed detection[J]. IEEE Trans Aerosp Electron Syst,2003,39(1):34-52.
  • 6Xiang M,Zhao J. On the performance of distributed Neyman-Pearson detection systems[J]. IEEE Trans Syst Man Cybern, Part A: Systems and Human, 2001,31(1):78-83.

同被引文献29

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部