期刊文献+

融合奇异值分解和主分量分析的人脸识别算法 被引量:13

Fusion of SVD and PCA for face recognition
下载PDF
导出
摘要 提出了奇异值分解(SVD)和主分量分析(PCA)相结合的人脸识别算法。理论上,当两种数据或分类器具有一定的独立性或互补性时,数据融合或分类器融合才能改善识别率。SVD和PCA之间有着明显的互补之处。PCA在图像表示上是最佳的(在均方差意义上),但敏感于位移、旋转等几何变换。而SVD则具有位移、旋转不变性。因此,将这两种方法相结合就有可能提高分类性能(好于单独的SVD方法和单独的PCA方法)。在ORL数据库上的实验表明,SVD和PCA相融合的识别方法的确提高了人脸识别率。 A face recognition method based on the fusion of principal component analysis (PCA) and singular value decomposition(SVD) is presented. In theory, fusion of different data or classifiers can achieve better performance when they are independent or they can overcome the shortcomings of each other. One of drawbacks of PCA-based method is that PCA is sensitive to translation, rotation and other geometric transforms. Contrary to PCA, SVD has the merit of invariance to translation, rotation and other geometric transforms. By combining these two methods, it is expected that better recognition performance can be obtained. Experiment results on ORL face database demonstrate that the proposed method can indeed improve face recognition rate.
出处 《信号处理》 CSCD 北大核心 2005年第2期202-205,共4页 Journal of Signal Processing
基金 安徽省自然科学基金项目资助(编号03042307)
  • 相关文献

参考文献15

  • 1洪子泉,杨静宇.用于图象识别的图象代数特征抽取[J].自动化学报,1992,18(2):233-238. 被引量:71
  • 2R. Chellappa, C.L Wilson, S. Sirohey, Human and machine recognition of faces: a survey, Proc. IEEE,1995, 83 (5): 705-740.
  • 3M. Turk, A. Pentland, “Face recognition using eigen-faces”, In: Proc. IEEE Conf. On Computer Vision and Pattern Recognition, 1991, 586-591.
  • 4Diego A. Socolinsky, Andrea Selinger, and Joshua D.Neuheisel, Face recognition with visible and thermal infrared imagery, Computer Vision and Image Unders-tanding, 2003, 91: 72-114.
  • 5E Tsalakanidou, D.Tzovaras, M.G. Strintzis, “Use of depth and colour eigenfaces for face recognition”, Pattern recognition letters, 2003, 24: 1427-1435.
  • 6J. Kittler and E Roli Eds, Proceedings of the First Intemational Workshop on Multiple Classifier Systems,Springer LNCS 1857, Itanly, 2000.
  • 7F. Roli and J. Kittler Eds., Proceedings of the Third Intemational Workshop on Multiple Classifier Systems,Springer LNCS 2364, Italy, 2002.
  • 8Bernard Achermann, Horst Bunke, “Combination of face classifiers for person indentification,” Proceedings of the 13^th IAPR international conference on Pattern recognition(ICPR), 1996, 3: 416-420.
  • 9Gian Luca Marcialis and Fabio Roli, “Fusion of LDA and PCA for face verification”, Proceedings of the Workshop on Biometric Authentication, M. Tistarel and J. Bigun Eds., Springer LNCS 2359, 2002.
  • 10Xiaoguang Lu, Yunhong Wang, Anil K.Jain, “Combining classifier for face recognition,” Interna- tional Conference on Multimedia and Expo, 2003, 3: 16-19.

二级参考文献3

  • 1李淑秋,数据采集与处理,1989年,4卷,增刊,12页
  • 2Tian Q,J Opt Soc Am A,1988年,5卷,10期,1670页
  • 3孙继广,矩阵扰动分析,1987年

共引文献70

同被引文献112

引证文献13

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部