期刊文献+

基于遗传算法的铣刀片三维复杂槽型重构技术 被引量:1

RECONSTRUCTION TECHNIQUE OF 3D COMPLEX GROOVE OF MILLING INSERT BASED ON GENETIC ALGORITHMS
下载PDF
导出
摘要 为了获得切削性能更优良的可转位铣刀片槽型,从而改善铣刀片的温度场和应力场,进行了三维复杂槽型铣刀片的测温试验、三维温度场分析及其模糊综合评判。基于遗传算法,提出了以受热密度函数为目标函数,以温度场模糊综合评判为驱动的铣刀片三维复杂槽型的重构算法,获得了新的波形槽型。实例验证表明,新槽型较重构前的槽型在温度场方面具有更好的性能。利用该方法同样可以构造拟合其他类型三维复杂槽型。 The temperature measuring experiment, analysis of 3D temperature field and fuzzy comprehensive evaluation for temperature field are processed to obtain groove of indexable milling insert with better cutting performance to improve the temperature field and stress field of milling insert. Based on genetic algorithm and temperature field of milling insert and driven by fuzzy comprehensive evaluation of temperature field, the reconstruction algorithm of 3D complex groove of milling insert is presented as the heating density function being the target function. The new wave groove is obtained, and the groove reconstruction system is developed. The verification example shows that the new groove has better performance than before on temperature field. Other grooves could be reconstructed by this method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第6期113-117,122,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(50275042)黑龙江省教育厅海外学人重点基金(1054HZ006)资助项目.
关键词 遗传算法 铣刀片 温度场 槽型重构 Genetic algorithm Milling insert Temperature field Groove reconstruction
  • 引文网络
  • 相关文献

参考文献13

  • 1Tan G Y, Yuan J L, Wang X L, et al. Cause of brittle tool exit failure in intermittent cutting. Journal of Harbin Institute of Technology, 1997, 4(2): 107-111.
  • 2李振加,张中民,严复刚,董丽华,陶海虹,韦银利,融亦鸣.波形刃铣刀片的开发及其铣削力数学模型[J].机械工程学报,2000,36(10):42-45. 被引量:16
  • 3Berliner E M, Knainov V P. Analytic calculation of the temperature field and heat flows on the tool surface in metal cutting due to sliding friction. Wear, 1991,143:379-395.
  • 4Radules U R, Kapoor S G. An analytical model for prediction of tool temperature fields during continuous and interrupted cutting. Journal of Engineering for Industry,1994, 116: 135.
  • 5Liu D F, Yu X X, Lou P Y. Finite element analysis of the temperature distribution in orthogonal metal machining.Journal of Beijing Institute of Technology, 1999, 8(4):386-391.
  • 6Fel'Adshtein E E, Kaminski V L. Modeling of the thermal field of a workpiece in milling of austenitic steel by a fmger-type cutter. Journal of Engineering Physics and Thermophysics, 2001, 74(1): 149-152.
  • 7Hossainy T M E, EI-Shazly M H. Finite element simulation of metal cutting considering chip behavior and temperature distribution. Materials and Manufacturing Processes, 2001, 16(6): 803-814.
  • 8Grzesik W. Experimental investigation of the cutting temperature when turning with coated indexable inserts.International Journal of Machine Tools & Manufacture,1999,39(3):355-369.
  • 9Fang D, Michael R L. Boundary element method analysis of temperature fields in coated cutting tools. International Journal of Solids and Structures, 2001, 38(26-27): 4557-4570.
  • 10Young H T, Chou T L. Modelling of tool/chip interface temperature distribution in metal cutting. International Journal of Mechanical Sciences, 1994, 36(10): 931-943.

二级参考文献8

共引文献52

同被引文献10

引证文献1

;
使用帮助 返回顶部