期刊文献+

多孔介质中可逆化学反应和传质过程数值模拟 被引量:3

Numerical Simulation of Reversible Chemical Reaction and Mass Transfer Process in Porous Media
下载PDF
导出
摘要 考虑到流体同固体骨架间的化学反应对多孔介质内的传递过程有很大影响,在导出微元体的综合速率表达式基础上,建立了描述当流体同固体骨架间存在可逆化学反应时多孔介质内传递过程的数学模型,运用有效容积隐式方法对其进行数值求解·针对固定床中铁矿石的间接还原反应,分析了流速、颗粒半径、化学反应平衡常数、化学反应速率等主要参数以及Peclet数和Thiele数的相对大小对床层内气体浓度分布和固体转化率分布的影响规律·研究结果对反应器的设计和运行具有一定的参考作用· The chemical reactions between fluid and porous matrix affect greatly the mass transfer process in porous media. A convection-reaction-diffusion mathematical model is thus developed by deriving a comprehensive formula of the representative elementary volume (REV), to describe the mass transfer process in porous media when the fluid and porous matrix take reversible chemical reaction. A numerical solution to the model is available by way of the finite volume implicit method. Taking the indirect reduction of iron ore in static bed into account, the influences of such main parameters as flow rate, particle size, equilibrium constant in chemical reaction and reaction rate and the ratio of the Peclet number to the Thiele number on the distribution of gas concentration and of fractional solid conversion are all analyzed. The results are useful for the conceptual design and operation of reactor.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第7期663-666,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50136020) 教育部重点资助项目(01056)
关键词 多孔介质 传递过程 可逆化学反应 耦合 微元体 综合速率 porous medium mass transfer process reversible chemical reaction coupling representative elemental volume overall rate
  • 相关文献

参考文献11

  • 1Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002,45(14):2983-2993.
  • 2Cheng P. Similarity solutions for mixed convection from horizontal impermeable surfaces in saturated porous media[J]. International Journal of Heat and Mass Transfer, 1977,20(9):893-898.
  • 3Bear J, Bensabat J, Nir A. Heat and mass transfer in unsaturated porous media at a hot boundary. I. one-dimensional analytical model[J]. Transport in Porous Media, 1991,6(3):281-298.
  • 4施明恒,虞维平,王补宣.多孔介质传热传质研究的现状和展望[J].东南大学学报(自然科学版),1994,24(S1):1-7. 被引量:28
  • 5Patankar S V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill Book Co, 1980.24-68.
  • 6陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2002..
  • 7徐曾和,翟玉春,纪智玲.固定床中对流扩散与反应耦合问题的一个解析解[J].中国有色金属学报,2004,14(11):1918-1925. 被引量:10
  • 8李明春,徐曾和,翟玉春,田彦文.固定床一维对流-扩散-非线性反应方程的数值解析[J].过程工程学报,2004,4(6):490-495. 被引量:3
  • 9Spalding D B. A novel finite difference formulation for differential expressions involving both first and second derivatives[J]. International Journal of Numerical Method in Engineering, 1972,4(4):551-559.
  • 10Tao W Q, Sparrow E M. The transportive property and convective numerical stability of the steady-state convection-diffusion finite difference equation[J]. Numer Heat Transfer, 1987,11(4):491-497.

二级参考文献21

  • 1Winkelman J G M, Beenackers A A C M. Simultaneous Absorption and Desorption with Reversible First-order Chemical Reaction: Analytical Solution and Negative Enhancement Factors [J]. Chem. Eng. Sci., 1993, 48(16): 2951-2955.
  • 2Whitaker S. Diffusion in Packed Beds of Porous Particles [J]. AIChE J., 1988, 34(4): 679-683.
  • 3Whitaker S. Diffusion and Reaction in a Micropore-Macropore Model of Porous Medium [J]. Lat. Amer. Chem. Appl. Chem., 1983, 13(143): 552-559.
  • 4Patankar S V. Numerical Heat Transfer and Fluid Flow [M]. New York: McGraw-Hill Book Co., 1980. 142-145.
  • 5Spalding D B. A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives [J]. Int. J. Numer. Methods Eng., 1972, 4(4): 551-559.
  • 6Tao W Q, Sparrow E M. The Transportive Property and Convective Numerical Stability of the Steady-state Convection- Diffusion Finite Difference Equation [J]. Numer. Heat Transfer, 1987, 11: 491-497.
  • 7Loureiro J M, Costa C, Rodrigues A E. Propagation of Concentration Wave in Fixed-bed Adsorption Reactor [J]. Chem. Eng. J., 1983, 27:135-148.
  • 8Loureiro J M, Rodrigues A E. Two Solution Methods for Hyperbolic System of Partial Differential Equations in Chemical Engineering [J]. Chem. Eng. Sci., 1991, 46(12): 3259-3267.
  • 9Bird R B, Steward W E, Lightfood E N. Transport Phenomena[M]. New York: John Wiley and Sons Inc, 1960.
  • 10Szekely J. Fluid Flow Phenomena in Metal Processing[M]. New York: Academic Press, 1979.

共引文献60

同被引文献26

  • 1徐曾和,翟玉春,纪智玲.固定床中对流扩散与反应耦合问题的一个解析解[J].中国有色金属学报,2004,14(11):1918-1925. 被引量:10
  • 2刘永兵,陈纪忠,阳永荣.固定床流体流动特征数值模拟[J].化学工程,2006,34(6):26-28. 被引量:6
  • 3郭湘波,王瑾.大型轴向固定床反应器中流体流动的数值模拟[J].石油化工,2007,36(7):705-711. 被引量:13
  • 4罗铭,刘金凤,杜特专,刘兆荣,白郁华.基于Fluent的多相模拟反应器的设计[J].计算机与应用化学,2007,24(9):1153-1158. 被引量:8
  • 5Quintard M,Whitaker S.Two-phase flow in heterogeneous porous media I.the influence of large spatial and temporal gradients[J].Transport in Porous Media,1990,5(4):341-379.
  • 6Vafai K,Sozen M J.Analysis of energy and momentum transport for fluid flow through a porous bed[J].Heat Transfer Trans ASME,1990,112(3):690-699.
  • 7Loureiro J,Costa C,Rodrigues A.Propagation of concentration waves in fixed-bed adsorptive reactor[J].The Chemical Engineering Journal and the Biochemical Engineering Journal,1983,27(3):135-148.
  • 8Costa C,Rodrigues A,Loureiro J.Numerical methods[J].NATO ASI Series,Series E:Applied Sciences,1986,107:227-254.
  • 9Winkelman J G M,Beenackers A A C M.Simultaneous absorption and desorption with reversible firsts-order chemical reaction:analytical solution and negative enhancement factors[J].Chemical Engineering Science,1993,48(16):2951-2955.
  • 10Whitaker S.Diffusion in pocked beds of porous particles[J].AIChE Journal,1988,34(4):337-346.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部