期刊文献+

羟基磷灰石-氧化锆复合材料的致密化及其力学性能 被引量:6

Densification and mechanical properties of hydroxyapatite-zirconia composite materials
下载PDF
导出
摘要 在无压条件下,采用添加CaF2法制备了羟基磷灰石氧化锆致密材料,并研究了CaF2含量对HA ZrO2材料的致密化、微观结构和力学性能的影响。结果显示:在HA ZrO2(10%~40%,质量分数,下同)复合材料中添加CaF2,使HA变成了分解温度高的氟部分取代羟基的磷灰石FHA,材料的密度和力学性能(抗弯强度和断裂韧性)明显提高;加入6%(质量分数)CaF2经1350℃烧结4h后,HA ZrO2(10%~40%)的相对密度均达到95%,抗弯强度达到100~120MPa,断裂韧性提高到1.2~1.6MPa·m1/2;随ZrO2含量的升高,HA ZrO2致密度有所下降;而当CaF2含量为6%,ZrO2含量高于40%时,HA ZrO2复合材料中形成αCa3(PO4)2、HA/ZrO2固溶体或立方氧化锆,导致复合材料的力学性能下降。 Densified HA-ZrO_2 composites were fabricated by adding CaF_2 under pressureless condition. The effects of CaF_2 content on the densification, phase compositions, microstructures and mechanical properties of HA-ZrO_2 composites were investigated. The results show that the reaction between CaF_2 and HA leads to the formation of fluorine partially substituted hydroxyapatite FHA with higher thermal stability, which enhances the densification, microstructures and mechanical properties of HA-ZrO_2 composites. When the HA(10%40%, mass fraction)-ZrO_2 composites adding 6% CaF_2 were sintered at 1350℃ for 4h, their theoretical densities can reach more than 95%. Fractural strength reaches 100200MPa and fracture toughness can enhance 1.21.6MPa·m^(1/2). The effects of zirconia on phase compositions and mechanical properties were also studied. The densities of HA- ZrO_2 composites decrease with increasing ZrO_2 contents. When the mass fraction of CaF_2 is above 6% and that of ZrO_2 is above 40%, formations of CaZrO_3, α-Ca_3(PO_4)_2, HA/ZrO_2 solid solution, and c-ZrO_2 lead to the poorer mechanical property of HA- ZrO_2 composites.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第6期952-957,共6页 The Chinese Journal of Nonferrous Metals
关键词 HA-ZrO2复合材料 致密化 力学性能 HA-ZrO_2 composites densification mechanical properties
  • 引文网络
  • 相关文献

参考文献20

  • 1Suchanek W, Yoshirnura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. J Mater Res, 1998,13(1) : 94 - 117.
  • 2Thangamani N, Chinnakali K, Gnanam F D. The effect of powder processing on the mechanical properties of hydroxyapatite [J]. Ceramics International,2002, 28(4) : 353 - 362.
  • 3Hench L L. Bioceramics: from concept to clinic[J]. J Am Ceram Soc, 1991, 74(7): 1487 - 1510.
  • 4Choi J W, Kong Y M, Kim H E, et al. Reinforcement of hydroxyapatite bioceramic by addition of Ni3 Al and Al2O3[J]. J Am Ceram Soc, 1998, 81(7): 1743-1748.
  • 5De W G, Corbijn A J. Metal fibre reinforced hydroxyapatite ceramics [J]. J Mater Sci, 1989, 24(9): 3411 - 3415.
  • 6Ji H X, Marquis P M. Preparation and characterization of Al2O3 reinforced hydroxyapatite[J]. Biomaterials, 1992, 13(11): 744-748.
  • 7Heimann R B, Vu T A. Effect of CaO on thermal decomposition during sintering of composite hydroxyapatite-zircionia mixtures for monolithic bioceramic implants[J]. J Mater Sci Lett, 1997, 16(6): 437 - 439.
  • 8Li J, Liao H, Hermansson L. Sintering of partially stabilized zirconia and partially stabilized hydroxyapatite composites by hot isostatic pressing and pressureless sintering[J]. Biomaterials, 1996, 17(18): 1787-1790.
  • 9Delgado J A. Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering[J]. J Mater Sci: Mater Med, 1999, 10(12): 715-719.
  • 10Takagi M, Mochida M, Uchida N, et al. Filter cake forming and hot isostatic pressing for TZP-dispersed hydroxyapatite composite [J]. J Mater Sci: Mater Med, 1992, 3(4): 199-203.

同被引文献72

引证文献6

二级引证文献11

;
使用帮助 返回顶部