期刊文献+

高频金融时间序列的异象特征分析及应用——基于多重分形谱及其参数的研究 被引量:11

Analysis on Anomalous Characteristics of High frequency Time Series and Its Applications——Based on Multifractal Spectrum and Its Parameters
下载PDF
导出
摘要 文章首先从理论上推导出金融资产价格的高频时间序列出现大幅震荡前后多重分形谱所具有的异象特征,然后随机选取两只股票(民生银行、哈飞股份)各35天的5min高频交易数据对上述特征进行实证分析。结果表明,两只股票在持续大幅波动开始与结束时,其多重分形谱形态及参数的变化与理论上的异象特征相吻合。运用该研究方法可以对金融资产持续大幅波动的开始及结束做出一定预测。 We first deduce the theoretical anomalous characteristics of multifractal spectra on high frequency financial time series during the period of significant price fluctuations. Taking two stocks’ 5min high frequency trading data (totaling 35 business days) as examples, we then demonstrate that multifractal spectra’s shapes and key parameters are consistent with the above theoretical anomalies. Using the method in this paper, we can forecast when abnormal fluctuations on prices of financial assets occur and finish.
作者 周孝华 宋坤
出处 《财经研究》 CSSCI 北大核心 2005年第7期123-132,共10页 Journal of Finance and Economics
基金 国家自然科学基金资助项目(70473107)
关键词 多重分形谱 高频金融时间序列 大幅震荡 预测 multifractal spectrum high frequency financial time series sharp fluctuation forecast
  • 引文网络
  • 相关文献

参考文献16

  • 1Mandelbrot B B. A multifractal walk down wall street[J]. Scientific American, 1999,5:20-23.
  • 2Halsey T C, Jensen M H, Kadanoff L P. Fractal measures and their singularities:the characterization of strange sets[J]. Phvs Rev A, 1986, 33:1141-1150.
  • 3Ghashghaie S, Breymann W, Peinke J, Talkner T,Dodge Y. Turbulent cascade In foreign exchange markets[J]. Nature, 1996, 381: 767-770.
  • 4Rosario N. Mantegna, H Eugene Stanley. Modeling of financial data: Comparison of the truncated 16vy flight and the ARCH(l) and GARCH(1,1) processes[J]. Physica A, 1998, 254: 77-84.
  • 5Alexey N Pavlov, Wemer Ebeling, Lutz Molgedey, Amir R. Ziganshin, Vadim S. Anishchenko. Scaling features of texts, images and time series[J]. Physica A, 2001, 300:310-324.
  • 6Ioannis Andreadis, Apostolos Serletis. Evidence of a random multifractal turbulent structure in the Dow Jones industrial average[J]. Chaos, Solitons and Fractals, 2002, 13: 1309-1315.
  • 7Fulco U L, Lyra M L, Petroni F, Serva M, Viswanathan G M. A stochastic model for multifractal behavior of stock prices[J]. International Journal of Modem Physics B, 2004, 18,(4-5): 681-689.
  • 8张永东,毕秋香.中国股票市场多标度行为的实证分析[J].预测,2002,21(4):56-59. 被引量:18
  • 9何建敏,常松.中国股票市场多重分形游走及其预测[J].中国管理科学,2002,10(3):11-17. 被引量:43
  • 10胡雪明,宋学锋.深沪股票市场的多重分形分析[J].数量经济技术经济研究,2003,20(8):124-127. 被引量:42

二级参考文献27

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2中国科学院金融避险组 雍炯敏 等.中国股市风险特征分析.数学金融学-理论与实践[M].北京:高等教育出版社,2000.270-289.
  • 3Alvarez-Ramirez J,Cisneros M,Ibarra-Valdez C. Multifractal Hurst analysis of crude oil prices. Physica A, 2002, 313: 651~670.
  • 4Schmitt F,Schertzer D,Lovejoy S. Multifractal fluctuations in finance. Int.J.Theor.Appl.Fin., 2000, 3(3):361~364.
  • 5Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 2002,316: 87~114.
  • 6Ausloos M,Vandewalle N, Boveroux P H, et al.Applications of statistical physics to economic and financial topics. Physica A, 1999, 274: 229--240.
  • 7Andreadis I,Serletis A. Evidence of a random multifractal turbulent structure in the Dow Jones industrial average. Chaos, Solitons and Fractals, 2002,13(6): 1309~1315.
  • 8Bandiera L, Cester A, Paccagnella A, et al.Detrended fluctuation analysis of the soft breakdown current.Microelectronic Engineering, 2001, 59(1): 49~ 53.
  • 9Govindan R B, Vjushin D,Brenner S, et al.Long-range correlations and trends in global climate models:Comparison with real data. Physica A, 2001, 294: 239~248.
  • 10Peng C K, Havlin S, Stanley H E, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 1995, 5(1): 82~87.

共引文献113

同被引文献119

引证文献11

二级引证文献74

;
使用帮助 返回顶部