摘要
以青梅为原料,采用液体发酵法对青梅果醋的醋酸发酵工艺进行了试验。将人工神经网络和正交试验相结合,提出了一种新的数据处理和分析方法,利用神经网络特有的自学能力,通过仿真、评估和优化,获得了醋酸发酵的优化工艺,即发酵时间为70h,起始酒精度为7%,接种量为11%。
The acetic acid fermentation technology of greengage vinegar was studied and a new method combined the artificial neural network (ANN) with the traditional orthogonal design was adopted to analyze and interpret the collected data. The optimum acetic acid fermentation technology was obtained through emulating, evaluating and optimizing process by the ANN, in which the optimized fermentation time was 70 h, the original ethanol concentration 7% and the inoculation amount 11%.
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2005年第7期85-88,共4页
Transactions of the Chinese Society for Agricultural Machinery
基金
杭州市萧山区科技局资助项目(项目编号:2004532I90)
关键词
青梅
果醋
发酵工艺
神经网络
Greengage, Fruit vinegar, Fermentation technology, Neural network