期刊文献+

用小波和神经网络相结合的方法识别人体表面肌电信号 被引量:1

Uniting the means of wavelet and ANN to identify the sEMG signal
下载PDF
导出
摘要 以MALTAB语言作为系统设计工具,将小波分析与神经网络相结合分析人体表面肌电信号。对SEMG信号的识别分为3个步骤:数据预处理,特征的提取,设计分类器分类。首先利用小波分析进行消噪,提取特征;然后采用BP神经网路进行分类、识别;最后通过对分类结果的分析与比较,证明小波与神经网络相结合是一种有效的表面肌电信号的模式识别方法。 In this paper we use the programing language of MATLAB as system designing tools, uniting the means of Wavelet and ANN to identify the SEMG signal. To identify the sEMG signal include three processes: preprocessing dates, charactering pick-up and classification. In the first using Wavelet to denoise and pick up the characters, then using BP NN to classify and identify, at last the result was analyzed and compared. The result indicate that the union of Wavelet and ANN is an effective mode to identify means of sEMG signal.
出处 《沈阳航空工业学院学报》 2005年第3期28-29,共2页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 人体表面肌电信号 小波 神经网络 sEMG wavelet ANN
  • 相关文献

参考文献2

二级参考文献8

共引文献119

同被引文献16

  • 1贾雪琴,王旭,李景宏,杨丹.基于小波变换和K-L展开的单通道表面肌电信号识别[J].东北大学学报(自然科学版),2006,27(8):859-862. 被引量:7
  • 2Deluca C. Phsiology and mathematics of myoelectric signals [J ]. IEEE Trans Biomed Eng, 1979, 26 (6) : 313 -325.
  • 3Mallat S. A theory for muhiresolution signal decomposition: the wavelet representation [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674-693.
  • 4Ronager J. Power spectrum analysis of EMG pattenl in normal and diseased muscles [ J ]. Neurol Sci, t989,94 (1 -3) :283 -294.
  • 5Daniel Z, Volker M K, George S M. A software package for the decomposition of long - term multichannel EMG signals using wavelet coefficients [ J ]. IEEE Transactions on Biomedical Engineering, 2003, 50 ( 1 ) :58 - 69.
  • 6Tikkanell P E. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal[ J ]. Biol Cybern, 1999, 80 (4) : 259 - 267.
  • 7Xin Guo, Peng Yang, Ying Li,et al. The sEMG analysis for the lower limb prosthesis using wavelet transformation [ C]//Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco: [ s. n. ] ,2004 : 341 - 344.
  • 8Kermani M Z,Wheeler B C, Badie K, et al. EMG feature selection for movement control of a eybemetie arm[ J ]. Cybernetics and systems, 1995, 26:189-210.
  • 9Kwon J, Lee D, Kim N,et al. EMG signals recognition for continuous prosthetic arm control purpose [ C ]//Proceedings of IEEE Asia Pacific Conferenee on Circuits and Systems,Seoul: [ s. n. ] 1996:365 -368.
  • 10Jingdong Zhao, Zongwu Xie, Li Jiang,et at. EMG control for a Five - fingered prosthetic hand based on wavelet transform and autoregressive model [ C]//Proceedings ot IEEE International Conference on Mechatronics and Automation, Luayang : [ s. n. ] ,2006 : 1097 - 1102.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部