期刊文献+

二维主成分分析方法的推广及其在人脸识别中的应用 被引量:20

Generalization of 2DPCA and its application in face recognition
下载PDF
导出
摘要 提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。 A human face recognition technique based on modular 2DPCA was presented. First, the original images were divided into modular images in proposed approach. Then the 2DPCA method could be directly used to the sub-images obtained from the previous step. There are three advantages for this way: 1)dimension reduction of discriminant features can be done conveniently; 2)singular value decomposition of matrix is fully avoided in the process of feature extraction, so the features for recognition can be gained easily; 3)as opposed to 2DPCA, the feature matrix of lower dimension can be employed, and higher (not less at least) correct recognition rate can be reached. Moreover, 2DPCA is the special case of modular 2DPCA. To test modular 2DPCA and evaluate its performance, a series of experiments were performed on three human face image databases: ORL and NJUST603 human face databases. The experimental results indicated that the performance of modular 2DPCA is superior to that of 2DPCA.
出处 《计算机应用》 CSCD 北大核心 2005年第8期1767-1770,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60472060)
关键词 线性鉴别分析 特征抽取 分块二维主成分分析 特征矩阵 人脸识别 <Keyword>LDA(Linear Discriminant Analysis) feature extraction Modular 2DPCA (Modular two-Dimensional Principal Component Analysis) feature matrix face recognition
  • 相关文献

参考文献13

  • 1边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.12.
  • 2PENTLAND A. Looking at people: Sensing for ubiquitous and wearable computing[ J]. IEEE Transactions on Pattern Anal Machine Intell, 2000, 22(1): 107 -119.
  • 3BELHUMEUR PN , HESPANHA JP ,KRIENGMAN DJ. Eigenfaces vs Fisherfaces: Recognition using class specific linearprojection [ J]. IEEE Transactions on Pattern Anal Machine Intell, 1997, 19(7): 711 -720.
  • 4JIN Z, YANG JY, HU ZS, et al. Face Recognition based on uncorrelated discriminant transformation [ J ]. Pattern Recognition, 2001,34(7): 1405 - 1416.
  • 5HONG ZQ, YANG JY. Optimal discriminant plane for a small number of samples and design method of classifier on the plane[ J]. Pattern Recognition1991, 24(4): 317 - 324.
  • 6LIU K, CHENG YQ, YANG JY. An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].International Journal of Pattern Recognition and Artificial Intelligence, 1992, 6(5): 817 - 829.
  • 7CHEN LF, YUAN H, LIAO M, et al. A new LDA-based face recognition system which can solve the small sample size problem[ J]. Pattern Recognition, 2000, 33(10): 1713 - 1726.
  • 8YU H, YANG Y. A direct LDA algorithm for high - dimensional data-with application to face recognition[ J]. Pattern Recognition,2001, 34(10): 2067 -2070.
  • 9杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 10YANG J, YANG JY. Why can LDA be performed in PCA transformed space?[ J]. Pattern Recognition 2003, 36:563 - 566.

二级参考文献27

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献145

同被引文献158

引证文献20

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部