摘要
1974年,Erds和Saucer提出如下问题:设f(p)是p个顶点的不含3正则子图的图的最大可能边数,确定f(p).本文给出:(1)f(p)≥3p-9,p≥4;(2)f(p)≥3p-5,p≥34.
The authors have considered only finite undirected graphs without loops or multipleedges. In 1974 Erdos and Saucer possed the problem:Let f(p)be the maximum possiblenumber of edges in a simple graph with p vertices which contains no 3-regular subgraph fordetermining f(p).The following bounds are given,(1)f(p)≥3p-9, for p≥4;(2)f(p)≥3p-5,for p≥34.
出处
《大连理工大学学报》
CAS
CSCD
北大核心
1995年第4期568-573,共6页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目