期刊文献+

一个比Newton法收敛快而稳的两点切线法 被引量:5

Tangential methos at two points having more accelerating and stable convergence than Newton method
下载PDF
导出
摘要 重复使用迭代信息反插值构造逆函数的近似,一方面较只使用单点信息能更好地逼近隐式函数,另一方面直接得到显式近似解.于是,得到了逼近精度高、计算速度快、表达简单的迭代格式.这就是在一元方程的求根和一维搜索中综合了切线法和割线法的新方法,并且获得收敛快而稳的满意结果;称为两点切线法. Reusing iterative information ,an approximate inverse function is constructed byinverse interpolation. The approximation approaches to original implicit function are more closethan approximate functions using information at single point.Authors can immediately getexplicit approximate solution instead of solving the approximation of the original function.Thereby,a new method is obtained in finding roots of one variable’s equation and looking foroptimum solutions of one dimensional search.It has higher accuracy approaching to originalfunction , accelerating calculation and simple iterative pattern. Because the method,named astangential method at two points,synthesizes tangential method and secant method, it can getsatisfactory computational results of accelerating and stable convergence.
出处 《大连理工大学学报》 CAS CSCD 北大核心 1995年第6期899-902,共4页 Journal of Dalian University of Technology
基金 国家科学基金资助项目
关键词 迭代法 逆函数 插值 两点切线法 iteration methods inverse function interpolation solutions/one dimensional search iterative information
  • 相关文献

参考文献2

二级参考文献1

共引文献7

同被引文献46

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部