期刊文献+

基于RBF神经网络的开关磁阻电机单神经元PID控制 被引量:52

SINGLE NEURON PID CONTROL FOR SWITCHED RELUCTANCE MOTORS BASED ON RBF NEURAL NETWORK
下载PDF
导出
摘要 论文提出了一种基于径向基函数(radialbasisfunction)神经网络在线辨识的开关磁阻电机(SRM)单神经元PID自适应控制新方法。该方法针对开关磁阻电机的非线性,利用具有自学习和自适应能力的单神经元来构成开关磁阻电机的单神经元自适应控制器,不但结构简单,而且能适应环境变化,具有较强的鲁棒性。并构造了一个RBF网络对系统进行在线辨识,建立其在线参考模型,由单神经元控制器完成控制器参数的自学习,从而实现控制器参数的在线调整,能取得更好的控制效果。样机的实验结果表明,文中所提出的基于RBF神经网络辨识的开关磁阻电机单神经元自适应PID控制方法,通过在线辨识建立了过程模型并为神经元控制器提供了梯度信息,达到了在线辨识在线控制的目的,控制精度高,动态特性好。 This paper presents an novel approach of single neuron adaptive control for switched reluctance motors (SRM) based on radial basis function (RBF) neural network on-line identification. The method uses single neuron to construct the adaptive controller of SRM, and has the advantages of simple construction, adaptability and robustness. A RBF network is built to identify the system on-line, and then constructs the on-line reference model, implements self-learning of controller parameters by single neuron controller, thus achieve on-line regulation of controller's parameters. The experimental result shows that the method given in this paper can construct processing model through on-line identification and then give gradient information to neuron controller, it can achieve on-line identification and on-line control with high control accuracy and good dynamic characteristics.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第15期161-165,共5页 Proceedings of the CSEE
关键词 电机 RBF神经网络 开关磁阻电机 单神经元 PID控制 在线辨识 Electric machinery Radial basis functionneural network Switched reluctance motor Single neuron PIDcontrol On-line identification
  • 相关文献

参考文献13

二级参考文献46

  • 1金耀初,蒋静坪,诸静.结合模糊推理的多变量神经自适应控制[J].信息与控制,1994,23(4):223-228. 被引量:5
  • 2王永冀 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 3[1]Carlson R,Lajoie-Mazenc M,Fagundes J.Analysis of torque ripple due to phase commutation in brushleses DC machines[J]. IEEE Trans on Industry Application,1992,28(3):632-638.
  • 4[2]Batzel T D,Lee K Y.Commutation torque ripple minimization for permanent magnet synchronous machines with hall effect position feedback[J]. IEEE Trans on Energy Conversion,1998,13(3):257-262.
  • 5[3]Park S J,Park H W,Lee M H,et al. A new approach for minimum torque ripple maximum efficiency control of BLDC motor[J]. IEEE Trans on Industry Electronics,2000,47(4):109-113.
  • 6[4]Kim Y,Kook Y,Ko Y. A new technique of reducing torque ripples for BDCM drives [J]. IEEE Trans on Industrial Electronics. 1997,44(5):735-739.
  • 7[5]Fukuda T,Shibata T.Theory and application of neural networks for industrial control system[J].IEEE Trans on Industrial Electronics,1992,39(6):432-489.
  • 8[6]Ahmed R,Kotaru,Raj. Neural net-based robust controller design for brushless dc motor drives[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,1999,29(3):460-474.
  • 9Liao Y, Liang F, Lipo T A. A novel doubly salient permanent magnet motor[J], IEEE Transactions on Industry Applications, 1995, 31(5):1069-1078.
  • 10Blaabjerg F, Christensen L, Rasmussen P O, et al. New advanced control methods for doubly salient permanent magnet motor[C]. Record of Industry Applications Society Annual Meeting,Orlando, USA, 1995, 272-290.

共引文献577

同被引文献428

引证文献52

二级引证文献356

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部