期刊文献+

NA阵列加权乘积和的完全收敛性 被引量:3

COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF NA RANDOM VARIABLES
原文传递
导出
摘要 设{X_(ni):1≤i≤n,n≥1}为行间NA阵列,g(x)是R^+上指数为α的正则变化函数,r>0,m为正整数,{a_(ni):1≤i≤n,n≥1}为满足条件(?)|a_(ni)|=O((g(n))~1)的实数阵列,本文得到了使sum from n=1 to ∞n^(r-1)Pr(|■multiply from j=1 to m a_(nij) X_(nij)|>ε)<∞,■ε>0成立的条件,推广并改进了Stout及王岳宝和苏淳等的结论。 Let {xni:l≤i≤n,n≥1} be an array of rowwise NA random variables,and let g(x) be a regular function with index α. Let {ani:1≤i≤n,n≥1} be an array of real numbers satisfying max 1≤i≤n,n≥1 ani = O((g(n))^-1). Let r〉0, and let m be a positive integer. A set of sufficient conditions such that ∑ 1≤i1〈…〈im≤n Л j=1 ^m anij,Xnij〉ε)〈∞,ε〉0 are obtained. The well-known results by Stout and Wang are extended.
出处 《系统科学与数学》 CSCD 北大核心 2005年第4期451-458,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10271087)
关键词 行间NA阵列 加权乘积和 完全收敛性 正则变化函数 阵列 NA 绝对值 上指数 正整数 实数 Array of rowwise NA random variables, weighted procduct sum, complete convergence, regular varying function
  • 相关文献

参考文献12

二级参考文献15

共引文献66

同被引文献19

  • 1杨善朝.■-混合序列加权和的收敛性质[J].应用概率统计,1995,11(3):273-282. 被引量:4
  • 2邵启满.一矩不等式及其应用[J].数学学报,1988,31(6):736-747.
  • 3伍艳春,王远清.■混合序列的Jamison型加权乘积和的强稳定性[J].桂林工学院学报,2007,27(2):290-293. 被引量:1
  • 4Bozorgnia A, Patterson R F,Taylor R L. Limit theorems for dependent random variables[R]. World Congress Nonlinear Analysis'92,1996,1639-1650.
  • 5Joag-Dev K, Proschan F. Negative association of random variables with applications[J]. Ann. Statist. , 1983,11:286-295.
  • 6Stout W F. Almost Sure Convergence[M]. New York:Academic Press,1974.
  • 7Bingham N H, Coldie C M, Teugels J L. Regular Variation[M]. Cambridge:Cambridge University Press, 1987.
  • 8Liu J J, Gan S X, Chen P Y. The Hajeck-Renyi inequality for the NA random variables and its application[J]. Statist. Probab. Lett., 1999,43:99-105.
  • 9Shao Q M. Acomparison theorem on maximal inequalities between negatively associated and independent random variables[J]. J. Theor Probab, 2000,13(2):343-356.
  • 10Bingham N H, Coldie C M, Teugels J L. Regular Variation[M]. Cambridge: Cambridge University Press, 1987.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部