期刊文献+

小样本情况下Fisher线性鉴别分析的理论及其验证 被引量:17

Theory of Fisher Linear Discriminant Analysis for Small Sample Size Problem and Its Verification
下载PDF
导出
摘要 线性鉴别分析是特征抽取中最为经典和广泛使用的方法之一。近几年,在小样本情况下如何抽取F isher最优鉴别特征一直是许多研究者关心的问题。本文应用投影变换和同构变换的原理,从理论上解决了小样本情况下最优鉴别矢量的求解问题,即最优鉴别矢量可在一个低维空间里求得;给出了特征抽取模型,并给出求解模型的PPCA+LDA算法;在ORL人脸库3种分辨率灰度图像上进行实验。实验结果表明,PPCA+LDA算法抽取的鉴别向量有较强的特征抽取能力,在普通的最小距离分类器下能达到较高的正确识别率,而且识别结果十分稳定。 Linear discriminant analysis is one of the classical and popular methods used for feature extraction. In recent years many researchers have been absorbed in the problem of how to extract the optimal Fisher discriminant feature in small sample size case. By making use of the principle of projection transformation and isomorphic transformation, in this paper,we have solved the problem of how to gain the optimal discriminant vectors in the singular case. In fact these optimal discriminant vectors can be derived from a low dimension transformed subspace. Fulfilling the need of application, a new model for feature extraction has been put forward and a corresponding algorithm, called PPCA + LDA in this paper, has been established. The experiments on three kinds of resolution grayscale image for ORL face image database have been performed. The results of experiments show that the set of the discriminant vectors extracted by the proposed algorithm has powerful ability of feature extraction and the recognition results are very robust by the general minimum distance classifier.
出处 《中国图象图形学报》 CSCD 北大核心 2005年第8期984-991,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60472060)
关键词 小样本问题 主成分分析 线性鉴别分析 压缩变换 人脸识别 small sample size problem, PCA (principal component analysis), LDA (linear discriminant analysis ),compressed transformation, face recognition
  • 相关文献

参考文献20

  • 1边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.224-227.
  • 2Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics,1936,7: 179-188.
  • 3Wilks S S. Mathematical Statistics [M]. New York : Wiley, 1962 :577 - 578.
  • 4DudaRichardO HartPeterE 李宏东 姚天翔译 StorkDavidG.模式分类[M].北京:机械工业出版社,2003.94-98.
  • 5Duda R, Hart P. Pattern Classification and Scene Analysis [M].New York: Wiley, 1973:113 -120.
  • 6Sammon J W. An optimal discriminant plane[ J]. IEEE Transactions on Computer, 1970,19:826 - 829.
  • 7Foley D H, Sammon J W Jr. An optimal set of discriminant vectors[J]. IEEE Transactions on Computer, 1975, 24(3): 281 -289.
  • 8Duchene J, Leclercq S. An optimal transformation for discriminant and principal component analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6) : 978 -983.
  • 9Jin Zhong, Yang J Y, Hu Z S, et al. Face recognition based on uncorrelated discriminant transformation [J]. Pattern Recognition,2001,34(7): 1405-1416.
  • 10Jin Z, Yang J Y, Tang Z M, et al. A theorem on uncorrelated optimal discriminant vectors [J]. Pattern Recognition, 2001,34(10) :2041 -2047.

二级参考文献18

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献122

同被引文献149

引证文献17

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部