期刊文献+

万有Teichmuller空间中测地线的不唯一性 被引量:3

Non-uniqueness of of Geodesics in the Universal Tfeichmuller Space
下载PDF
导出
摘要 本文主要讨论万有Teichmtiller空间中的测地线问题,并给出了一些测地线不唯一的判断准则.特别地,证明了如下定理:设f是单位圆△到自身上的极值拟共形映射,μ是它的复特征,如果存在常数k.<||μ||_∞,使集合{z∈△:|μ(Z)|≤k}有内点,则在万有Teichmuller空间中,原点[0]与[μ]之间存在无穷多条测地线. The purpose of the paper is to discuss the geodesic problem in the universal Te-ichmtiller space. Some criteria of non-uniqueness of geodesics are given. Especially,the followingtheorem is proved:Let f be an extremal quasiconformal mapping of the unit disk △ onto itself,and μ its complex dilatation. Suppose that there exists a constant such that the sethas an interior point,then there exist infinitely many geodesics joining thepoint [0]and[μ].
作者 沈玉良
机构地区 北京大学数学系
出处 《数学进展》 CSCD 北大核心 1995年第3期237-243,共7页 Advances in Mathematics(China)
关键词 T空间 拟共形映射 测地线 极值映射 Teichmuller space extremal Beltrami differential extremal quasiconformalmapping geodesic
  • 相关文献

同被引文献10

  • 1FAN JinHua1 & CHEN JiXiu2 1 Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China 2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China.On the equivalence of extremal Teichmller mapping[J].Science China Mathematics,2009,52(1):77-86. 被引量:2
  • 2沈玉良,刘晓毅.全纯二次微分的一些注记(英文)[J].数学进展,2004,33(4):471-476. 被引量:2
  • 3AHLFORS L V. Quasiconformal Reflections[J]. Acta Math, 1963: 291-301.
  • 4AHLFORS L V. Sufficient Conditions for Quasi-Con- formal Extension[J]. Ann of Math Studies, 1974,79 : 23-29.
  • 5BECKER J. Low Nersche Differentlalglechung and Quasikonform Fortsetzbare Schlichte Funktionen[J]. J Reine Angew Math, 1972,255 : 23-43.
  • 6BERS L, A non-Standard Integral Equation with Ap- plication to Quasiconformal Mappings[J]. Acta Math. 1966,116:113-134.
  • 7BECKER J. Conformal Mappings with Quasiconformal Extensions[M]. Aspects of Contemporary Complex A- nalysis. Academic Press, 1981 : 37-77.
  • 8LI Z. Nonunquness of Geodesics in Infinite Dimensional Teichmuller Space[J]. Complex Variables Theory Ap- pl,1991,16:261-272.
  • 9EARLE C J, KRA I, KRUSHUKAL S L. Holomorphic Motions and Teichmuller Space [J]. Trans Amer Math Soc, 1994,343 (2) : 927-948.
  • 10SHEN Y L. On Teichmulle Geometry[J]. Complex Variables, 2001,44 : 73-83.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部