摘要
设f(n)是有n个顶点的任何两个圈的长均不相等的图的最大可能边数,P.Erdos在1975年提出的了确定f(n)的问题(见(1)问题11),设f(n,r)是有n个有顶点的圈长不小于r的任何两个圈的长均不相等的图的最大可能边数,本文给出了f(n,r)的上、下界。
Let f (n, r)be the maximum number of edges in a graph on n vertices in which no two cycles have the same length and the length of every cycle is no less than r,We show that f(n, r)〈√(2n-2emr-(e2m-4em+4)/2)(ln((-4mr-7m)+√(4mr-7m)2+4(4n-4)(2m+3))/( 4m+ 6))+ 1 ) +n- 4 +log2 (n+ 9-r) for n〉 ( ( 2m+ 3 )e2m + (4mr- 7m+ 8r-14)em +4 )/4(r≥3) and f (n, r) ≥n+32t-r for n ≥432t2+24190, 5t-264767,5 - (r-2 ) ( r- 1 ) / 2, k≥1, r≥ 1, 21t≥r, t = 1260k + 169. ( clearly f ( n, 1 ) =f(n)≤f(n, 3 ) + 2
出处
《漳州师院学报》
1995年第2期10-16,共7页
Journal of ZhangZhou Teachers College(Philosophy & Social Sciences)