期刊文献+

球磨改性处理对Ti_(46)V_(44)Fe_(10)合金相结构和吸放氢性能的影响 被引量:5

Influence of ball-milling on phase structure and hydriding/dehydriding behaviour of Ti_(46)V_(44)Fe_(10) alloy
下载PDF
导出
摘要 研究了不同条件下机械球磨改性处理对Ti46V44Fe10储氢合金相结构和吸放氢性能的影响.X射线衍射及扫描电镜分析表明:Ti46V44Fe10铸态合金由单一的体心立方(BCC)结构的固溶体组成;经过1 h的干法球磨(未添加四氢呋喃THF)后,合金中出现了微量的α-Ti第二相,主相晶胞体积减小,合金颗粒明显减小并发生团聚;经过0.5、1、20 h的湿法球磨(添加THF)后,合金中分别出现了含量不等的α-Ti第二相,主相晶胞体积逐渐减小,颗粒尺寸明显减小.储氢性能测试表明:球磨改性处理能有效地改善合金的活化性能,活化次数由球磨前的4次降至球磨后的1~2次;短时间(0.5 h,1 h)湿磨还能改善Ti46V44Fe10合金的吸放氢容量;但1 h干磨和20 h湿磨则会明显降低合金的吸放氢容量. The change in the phase structure and hydrogen storage properties of Ti46V44Fe10 alloy after modification by ball-milling under different conditions were investigated. XRD and SEM analysis show that the as-cast alloy consists of a single solid-solution phase with BCC structure. The modified alloy dry-milled without tetrahydrofuran (THF) for 1 h has a little α-Ti secondary phase besides the BCC main phase, the unit cell volume of main phase decreases, the particle size decreases and the powder appears aggregation. The modified alloys wet-milled in THF for 0.5 h, 1 h or 20 h also have some α-Ti secondary phase besides the BCC phase, the unit cell volume of main phase decreases with the increase of ball-milling time, and the particle size decreases obviously. It is found that the ball- milling can improve the activation behaviour of the Ti46V44Fe10 alloys effectively. Comparing with the as-cast alloy, the hydrogen absorption/desorption capacities of the alloys wet-milled for 0. 5 h or 1 h increase, but the hydrogen absorption/desorption capacities of the alloy dry-milled for 1 h or wet-milled for 20 h decrease.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第8期1231-1235,共5页 The Chinese Journal of Nonferrous Metals
基金 国家高技术研究发展计划资助项目(2003AA515021) 国家重点基础研究发展规划资助项目(TG2000026406).
关键词 Ti-V-Fe合金 球磨改性 相结构 储氢性能 Ti-V-Fe alloy ball-milling phase structure hydrogen storage property
  • 引文网络
  • 相关文献

参考文献14

  • 1Nomura K, Akiba E. H2 absorbing-desorbing characterization of the Ti-V-Fe alloy system [J]. J Alloys Comp, 1995, 231:513-517.
  • 2Okada M, Kuriiwa T, Kamegawa A, et al. Role of intermetallics in hydrogen storage materials[J]. Mater Sci Eng A, 2002, A329-331:305-312.
  • 3Cho S W, Han C S, Park C N, et al. The hydrogen storage characteristics of Ti-Cr-V alloys[J]. J Alloys Comp, 1999, 288:294-298.
  • 4Okada M, Kuriiwa T, Tamura T, et al. Ti-V-Cr b. c.c. alloys with high protium content [J]. J Alloys Comp, 2002, 330-332:511-516.
  • 5Tamura T, Tominaga Y, Matsumoto K, et al. Protium absorption properties of Ti-V-Cr-Mn alloys with a b. c. c. structure[J]. J Alloys Comp, 2002, 330 -332:522-525.
  • 6Cho S W, Han C S, Park C N, et al. Hydrogen storage characteristics of Ti-Zr-Cr-V alloys[J]. J Alloys Comp, 1999, 289:244-250.
  • 7Akiba E, Iba H. Hydrogen absorption by Laves phase related BCC solid solution[J]. Intermetallics, 1998,6:461-470.
  • 8Gary S. A panoramic overview of hydrogen storage alloys from a gas reaction point of view[J]. J Alloys Comp, 1999, 293- 295:877-888.
  • 9WANG Wei, CHEN Chang-pin, CHEN Lixin, et al.Change in structure and hydrogen storage properties of La2Mg16Ni alloy after modification by mechanical grinding in tetrahydrofuran[J]. J Alloys Comp, 2002,339:175-179.
  • 10迟洪忠,陈长聘,陈立新.苯溶液中球磨La_2Mg_(16)Ni合金的储氢性能[J].中国有色金属学报,2003,13(6):1374-1377. 被引量:5

二级参考文献52

  • 1[1]Homma T. In present status of fuel cells R & D in Japan[A]. Proceedings of International Symposium on Fuel Cells for Vehicles[C]. Nagoya: Committee of the Int Sym on Fuel Cells for Vehicles, 2000. 1-7.
  • 2[2]Selvanm P, Viswanathan B, Swamy C S, et al. Magnesium and magnesium alloy hydrides[J]. Int J Hydrogen Energy, 1986, 11(3): 169-192.
  • 3[3]Yajima S, Kayano H. Hydrogen absorption inLa2Mg17[J]. J Less Common Met, 1977, 55(1): 139-141.
  • 4[4]Khrussanova M, Peshev P. Calcium- and nickel- substituted lanthanum-magnesium alloys for hydrogen storage[J]. J Less-Common Met, 1987, 131(1-2): 397-383.
  • 5[5]Imamura H, Sakasai N, Fujinaga T. Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials[J]. J Alloys Comp, 1997, 253-254(1-2): 34-37.
  • 6[6]WANG Wei, CHEN Chang-pin, CHEN Li-xin, et al. Change in structure and hydrogen storage properties of La2Mg16Ni alloy after modification by mechanical grinding in tetrahydrofuran[J]. J Alloys Comp, 2002, 339(1-2): 175-179.
  • 7[7]CHEN Chang-pin, LIU Bing-hong, LI Zhou-peng, et al. The activation mechanism of Mg-based hydrogen storage alloys[J]. Z Phys Chem Bd, 1993, 181(1-2): 251-258.
  • 8[8]Tamaru K. Heterogeneous catalysis by electron donor-acceptor complexes of alkali metals[J]. Catal Rev, 1970, 4(1): 161-178.
  • 9[9]Imamura H, Tabata S, Takesue Y, et al. Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon[J]. Int J Hydrogen Energy, 2000, 25(9): 837-843.
  • 10[10]Bogdanovicc B, Spliethoff B. Active MgH2-Mg-system for hydrogen storage[J]. Int J Hydrogen Energy, 1987, 12(12): 863-873.

共引文献42

同被引文献95

引证文献5

二级引证文献74

;
使用帮助 返回顶部