期刊文献+

不等粒径流化床的软球模拟 被引量:9

Soft-sphere simulation with unequal particle diamete rs in gas-solid fluidized beds
下载PDF
导出
摘要 基于颗粒轨道模型,提出了粒径分别服从均匀分布与正态分布的软球方法,其中流体运动用Navier-Stokes方程描述,颗粒运动服从牛顿第二定理.模拟了不等粒径流化床中的气泡和节涌现象,并分别研究了表观气速、颗粒刚度系数、粒径分布不同时,固相颗粒的速度分布规律.其研究结果表明:分布板结构和表观气速对气泡行为有一定影响,随表观气速的增加,气泡形成、上升、破裂的速度加快;并且刚度系数越大,颗粒轴向速度随时间衰减越快;宽粒径分布的颗粒轴向速度大于窄粒径分布的颗粒轴向速度. Based on the particle-motion discrete model, a soft-sphere method used for the simulation of fluidization was established in which particle diameters were unequal. The particles motion obeyed the Newton's second law, and fluid motion was described by the Navier-Stokes equation. The abovementioned model was used for simulating bubbling and slugging behavior in the fluidized beds. Then the distribution of solids velocities was studied at different gas superficial velocities, stiffness and distributions of particle diameters. Simulation results indicated that the structure of distributor and gas superficial velocity showed some influence on the bubbling phenomena, and the formation, rise and break of bubbles were accelerated with increasing gas superficial velocity. The bigger the stiffness, the quicker the decay of axial solids velocities with increasing time. At the same time, axial solids velocities of wide distribution of particle diameters were bigger than that of narrow distribution.
作者 王芳 欧阳洁
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第8期1467-1473,共7页 CIESC Journal
基金 陕西省自然科学基金项目(2001SL0012)~~
关键词 气固流化床 软球方法 不等粒径 粒径分布 气泡 节涌 gas-solid fluidized bed soft-sphere method unequal particle diameters distribution of particle diameters bubbling slugging
  • 相关文献

参考文献12

  • 1Ouyang J, Li J H. Particle-motion-resolved discrete model for simulation gas-solid fluidization. Chem. Eng, Sci.,1999, 54 (13): 2077- 2083.
  • 2Ouyang J, Li J H. Discrete simulation of heterogeneous structure and dynamic behavior in gas-solid fluidization.Chem. Eng. Sci., 1999, 54 (22): 5427 -5440.
  • 3Wu S Y, Baeyens J. Segregation by size difference in gas fluidized beds. Powder Technol., 1998, 98 ( 2 ):139-150.
  • 4Mathiesen V, Solberg T, Hjertager B H. An experimental and computational study multiphase flow behavior in a circulating fluidized bed. Int. J. Multiphase Flow, 2000,26 (3): 387-419.
  • 5袁竹林,马明.稀疏气固两相流动中颗粒分离特性的数值模拟[J].燃烧科学与技术,2001,7(4):235-238. 被引量:15
  • 6袁竹林.流化床中颗粒流化运动的直接数值模拟[J].燃烧科学与技术,2001,7(2):120-122. 被引量:21
  • 7Ouyang J, Li J H, Sun G G. The simulations of annuluscore structure in CFB. Chinese Journal of Chemical Engineering, 2004, 12 (1): 27-32.
  • 8Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci.,1997, 52 (16): 2785-2809.
  • 9Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29 (1): 47-65.
  • 10Crowe C, Sommerfeld M, Tsuji Y. Multiphase Flow with Droplets and Particles. New York: CRC Press, 1998.

二级参考文献7

  • 1Yuan Zhulin,Developments in Chemical Engineering & Mineral Processing,2000年,8卷,3/4期,207页
  • 2Tsuji Y.Discrete ParticleSimulation of Gas-Solid Flows[J] .KO-NA,1993(11):57-68.
  • 3Tanaka T.Numerical Simulation of Gas-Soid Two-Phase Flow in a Vertical Pipe:on theEffect of Inter-Particle Collision[J].ASME/FED,1991, 121:123-128.
  • 4Nanbu K.Direct Simulation Scheme Derived from the Boltzmann Eq uation[J].JournalPhysical Society of Japan,1980,49,5,2042-2049.
  • 5Elghobashi S E,Abou-Arab T W.A Two-Equation Turbulence M odel for Two-PhaseFlows[J].Phys Fluids,1983(4):931-938.
  • 6Yuan Zhulin.Direct Numerical Simulation of Dense Gas-Solid Tw o-PhaseFlows[J].Developments in Chemical Engineering & Mineral Processing, 2000,3/4:207-217.
  • 7Hirschberg B,Werther J.Mixing and Segregation of Solids in a Circulating FluidizedBed[M]. Proc of Conference on Fluidizatio n VIII,France,1995.769-778.

共引文献29

同被引文献102

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部