期刊文献+

一类模糊线性规划的求解方法及应用 被引量:22

Solution to fuzzy linear programming and its application
下载PDF
导出
摘要 利用一种新的模糊数排序准则,提出了约束条件中含有三角模糊数的模糊线性规划转化为经典的线性规划的方法。与其他方法相比,该方法从理论上证明了得到的解优于其它解,约束条件个数少。用该方法求解了具有模糊等式约束的运输问题。通过数值算例,进一步表明了提出方法的有效性和应用的广泛性。 Fuzzy linear programming with constraint coefficients of triangle fuzzy numbers is transformed into classical linear programming by using a new ranking criterion of fuzzy numbers. Compared with the existing methods, firstly, the obtained solution is superior to other solutions in theory, secondly, this method has fewer number of constraints, The method can be applied to the transportation problem with fuzzy equality constraints. Moreover, effectiveness and extensive application of this method are illustrated by examples.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第8期1412-1415,共4页 Systems Engineering and Electronics
基金 陕西省自然科学基金资助课题(2002A12)
关键词 三角模糊数 排序准则 模糊线性规划 运输问题 triangle fuzzy number ranking criteria fuzzy linear programming transportation problem
  • 相关文献

参考文献8

  • 1Tanaka H, Asai K. A formulation of fuzzy linear programming based on comparison of fuzzy numbers[J]. Control and Cybernet,1984,13 : 185 - 194.
  • 2张增科.模糊数学在自动化技术中的应用[M].北京:清华大学出版社,1997..
  • 3梁志贞,施鹏飞.一种具有三角模糊系数的线性规划方法[J].系统工程与电子技术,2004,26(12):1818-1820. 被引量:14
  • 4Yao Jinshing, Lin Fengtse. Fuzzy critical path method based on signed distance ranking of fuzzy numbers [ J ]. IEEE Trans. on Systems, Man and Cybernetics-part A: Systems and Humans,2000,30:76 - 82.
  • 5Buckley J. Solving possibilitic linear programming[ J]. Fuzzy Sets and Systems, 1989,31:329 - 341.
  • 6Li Rongjun, Lee E Stanly. De novo programming with fuzzy coefficients and multiple fuzzy goals[J]. Journal of Mathematical Analysis and Applications, 1993,172:212 - 220.
  • 7高经纬,张煦,李峰,赵晖.求解TSP问题的遗传算法实现[J].计算机时代,2004(2):19-21. 被引量:57
  • 8Gao Shuping, Liu Sanyang. Two-phase fuzzy algorithms for multiobjective transportation problem[J]. Journal of Fuzzy Mathematics, 2004, 12(1): 147-155.

二级参考文献10

共引文献78

同被引文献99

引证文献22

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部