期刊文献+

关于采用高阶Boussinesq方程求解波浪散射问题的注记

A Note on Numerical Solution of Water Wave Scattering Problems over a Trench by High Order Boussinesq Equations
下载PDF
导出
摘要 本文讨论了采用高阶Boussinesq方程模拟波浪散射时对基本速度变量位置的局部光滑处理方法。通过光滑局部基本速度变量的取值深度,减小其高阶导数项的量值、加快级数收敛速度进而改善模型方程求解深水波浪散射问题的能力。对于底部边界具有一阶导数不连续的情况,通过局部光滑,可以将基本速度变量取值深度尖角转化为圆角过渡,从而改善速度分布。对于其它任意变化的底部边界,为了减少高阶底坡导数项的影响,在曲率和高阶底坡导数项与斜率具有相同量级的情况下亦需要对基本速度变量的取值深度局部光滑。数值计算结果表明本文提出的光滑技术可以很好地改善Boussinesq方程模拟浅水波和深水波在斜坡地形上散射问题的能力。 The water wave scattering by two dimensional trenches was studied by using the Boussinesq equations based on the utility velocity variables at the water level of half depth. To reduce the value of high order derivative terms relating to the water depth, the local smoothing technique was introduced. The performance on the water wave scattering problem in deep water region could be improved by smoothing the local relative water depth of utility velocity variables. To plane slope trenches, the local smoothing technique can improve the performance of the wave model in deep water region. To general vary beaches, the local smoothing can help to reduce the magnitude of curvature and higher order derivatives of water depth. The numerical results present that the correct estimations of the scattering on trenches for waves from shallow to deep water can be obtained by solving the modified Boussinesq equations associated with proper local smoothing technique.
作者 王本龙 刘桦
出处 《力学季刊》 CSCD 北大核心 2005年第3期346-353,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(No.10172058) 教育部博士点研究基金(No.2000024817)的资助.
关键词 BOUSSINESQ方程 Laplace方程精确解 波浪散射 反射 散射问题 方程求解 高阶 波浪 光滑处理 收敛速度 Boussinesq equations Laplace equation scattering reflection
  • 相关文献

参考文献4

二级参考文献14

  • 1Kristensen M K. Boussinesq equations and wave-current interaction[ D ]. Master ' s thesis. International Research Center for Computed Hydrodynamics (ICCH) at Danish Hydraulic Institute, Denmark and ISVA,Technical University of Denmark, 1995,130-142.
  • 2Madsen P A, Bingham H B, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water[ J ] . J Fluid Mech,2002, (462): 1-30.
  • 3Wu T Y. A unified theory for modeling water waves[ A ] . In: Advances in Applied Mechanics [ C ] .Boston:Academic Press,2000,37: 1-88.
  • 4Booij N.A note on the accuracy of the mild-slope equation[ J ]. Coastal Engineering, 1983,7 (2):191-203.
  • 5Suh K D, Lee C, Park W S. Time-dependent equations for wave propagation on rapidly varying topography[J]. Coastal Engineering, 1997,32(2/3):91-117.
  • 6Chen Q, Madsen P A. Schaffer H A, et al. Wave-current interaction based on an enhanced Boussinesq approach[ J]. Coastal Engineering, 1998,33( 1 ): 11-39.
  • 7Agnon Y, Madsen P A, Schaffer H A. A new approach to high order Boussinesq models[ J]. J Fluid Mech, 1999, (399) :319-333.
  • 8Madsen P A, Schaffer H A. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis[J]. Phil Trans Roy Soc, London A, 1998, (356) :3123-3184.
  • 9Gobbi M F, Kirby J T, Wei G. A fully nonlinear Boussinesq model for surface wave- Ⅱ: Extension to O( kh)4[ J]. J Fluid Mech ,2000, (405): 181-210.
  • 10CHEN Qin, Madsen P A, Basco D R. Current effects on nonlinear interactions of shallow-water waves[J].Journal of Waterway , Port, Coastal, and Ocean Engineering,1999,125(4) :176-186.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部