期刊文献+

基于自适应神经网络滤波的噪声消除 被引量:12

Noise Cancellation Based on Adaptive Neural Network Filtering
下载PDF
导出
摘要 设计的自适应神经网络噪声抵消系统不需要关于输入信号的先验知识,非线性映射能力强,具有自学习能力、计算量小、实时性好。利用该系统对含噪声的非线性信号建模,达到消除噪声的目的。通过LMS算法,对不同信噪比(SNR)的含噪信号进行滤波。仿真结果表明,该滤波器能有效地抑制噪声。 Based on the character about adaptive Neural Network filtering needn't previous information of input single, have better ability of nonlinear mapping and self-study,a novel adaptive noise cancellation system is designed.The system has the nature of a little quantity in its calculation and good for processing in real_time,can using in nonlinear modeling of noise single,and gets to noise cancellation.So a method are designed using LMS algorithm,and filtering about single of different SNR.It is shown that the filter is good for restraining noise by simulation.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第28期65-67,共3页 Computer Engineering and Applications
基金 湖南省教育厅科学研究项目(编号:03C499)
关键词 噪声 神经网络 噪声抵消 自适应滤波 noise,Neural Network,noise cancellation,adaptive filtering
  • 相关文献

参考文献8

  • 1M Ibnkahla et al. Satellite mobile communications:Technologies and challenges[C].In:Proceedings of the IEEE,2004;2(2):312~339.
  • 2G Ruggeri,F Beritelli,S Casale. Hybrid multimode/multi-rate CSACELP speech coding for adaptive voice over IP(ICASSP 2001 )[C]. In:Salt Lake City,USA,2001;2:733~736.
  • 3C H Chen,Xianju Wang. Speckle reduction and edge enhancement of NDE C-scan images using ICA[C].In :Review of Quantitative Nondestructive Evaluation, 2004; 23.
  • 4AbhijitSPandya RobertBMacy著 刘勇译.Pattern Recognition with neural networks in C++[M].北京:电子工业出版社,1998..
  • 5Udar Mittal,Nam Phamdo. Signal/noise KLT based approach for enhancing speech degraded by colored noise[J].IEEE Trans Speech Audio Processing,2000;8(2): 159~167.
  • 6S I Amari,H Park,K Fukumizu. Adaptive method for realizing natural gradient learning for multi-layer perceptrons[J].Neural Computation, 2000; 12: 1399~ 1409.
  • 7W Maass,E D Sontag. Neural systems as nonlinear filters[J].Neural Computation, 2000; 12 (8): 1743~1772.
  • 8张秦,冯存前.变步长LMS算法及其在自适应消噪中的应用[J].现代电子技术,2003,26(14):88-90. 被引量:12

二级参考文献5

共引文献11

同被引文献59

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部