期刊文献+

一类推广的差异演化算法及其应用 被引量:2

A Novel Extended Differential Evolutionary Algorithm and Its Applications
下载PDF
导出
摘要 针对差异演化算法的局部收敛性问题,从Minimax优化的角度,提出求解非线性多峰函数优化问题的一类推广的差异演化算法(EDEA).该算法利用均匀设计方法在可行域内产生初始群体,增加种群的差异性,具有大范围收敛的性质;并且动态收缩可行域,有效地抑制了粒子群优化算法易收敛到局部最优的缺陷;给出应用该方法到典型非线性优化和不稳定周期点的求解的具体步骤,通过仿真实验证明该算法是鲁棒的. To investigate the problem of local convergence of differential evolution (DE) algorithm, a novel extended differential evolutionary algorithm (EDEA) is proposed for nonlinear multi-moda tions' optimization in the way of Minimax optimization. It generates the initial population in feasib funce field by uniform design method for larger diversity of the population, so it has the property of convergence in large-scale. And it restrains DE's local convergence limitation virtually through contracting feasible space dynamically. Finally details of applying the proposed method into typical nonlinear optimization and unstable periodic points are given, and experiments done show the improved teehnique's robustness.
作者 高飞 童恒庆
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第5期547-551,共5页 Journal of Wuhan University:Natural Science Edition
基金 科技部技术创新基金(02C26214200218) 武汉理工大学校基金(XJJ2004113) 武汉理工大学教研项目 UIRT计划(A156 A157)资助项目
关键词 非线性优化 Minimax优化 差异演化 均匀设汁 nonlinear optimization Minimax optimization differential evolution uniform design
  • 相关文献

参考文献12

  • 1Whitley D. An Overview of Evolutionary Algorithms: Practical Issues and Common Pitfalls [J]. Information and Software Technology, 2001,43(14):817-831.
  • 2盛昭瀚 马军海.非线性动力系统分析引论[M].北京:科学出版社,2000..
  • 3Verhulst F. Nonlinear Differential Equations and Dynamical Systems[M].Berlin: Springer-Verlag, 1990.
  • 4Skokos C. On the stability of Periodic Orbits of High Dimensional Autonomous Hamiltonian Systems[J]. Physica D, 2001,159(3-4):155-179.
  • 5谢晓锋,张文俊,张国瑞,杨之廉.差异演化的实验研究[J].控制与决策,2004,19(1):49-52. 被引量:70
  • 6Ma C X. Uniform Design Based on Centered L2 Discrepancy Un(ns)[DB/OL].http://www.math.hkbu.edu.hk /UniformDesign/Un_n^s.html,1999.9.
  • 7Bandler J W, Charalambous C. Nonlinear Programming Using Minimax Techniques [J]. JOTA,1974,(13):607-619.
  • 8高飞.基于空间收缩的种群灭亡差异演化算法[J].复杂系统与复杂性科学,2004,1(2):87-92. 被引量:12
  • 9Vrahatis M N. An Efficient Method for Locating and Computing Periodic Orbits of Nonlinear Mappings [J].J Comp Physics,1995,(119):105-119.
  • 10Parsopoulos K E,Vrahatis M N. On the Computation of All Global Minimizers Through Particle Swarm Optimization[J].IEEE Tran on Evolutionary Computation,2004,8(3):211-224.

二级参考文献20

  • 1[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 2[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.
  • 3[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996.
  • 4[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973.
  • 5[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975.
  • 6[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975.
  • 7[7]Storn R. Differential evolution design of an IIR-filter [A]. IEEE Int Conf on Evolutionary Computation[C]. Nagoya,1996. 268-273.
  • 8[8]Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 9[9]Pahner U, Hameyer K. Adaptive coupling of differential evolution and multiquadrics approxima-tion for the tuning of the optimization process [J]. IEEE Trans on Magnetics, 2000, 36(4): 1047-1051.
  • 10[10]Cheng S L, Hwang C. Optimal approximation of linear systems by a differential evolution algorithm [J]. IEEE Trans on Systems, Man and Cybernetics - Part A, 2001, 31(6): 698-707.

共引文献78

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部