期刊文献+

DBS包覆TiO_2纳米粒子的表面光伏及光致发光性能 被引量:1

SPV and PL Performances of TiO_2 Nanoparticles Capped with DBS
下载PDF
导出
摘要 采用溶胶 - 水热法合成了十二烷基苯磺酸钠(DBS)包覆的TiO2纳米粒子,并利用X射线衍射仪、透射电镜、表面光电压谱(SPS)和光致发光光谱(PL)等对样品进行表征.重点探讨了DBS包覆的适宜条件及DBS包覆对TiO2光伏和发光等性质的影响.结果表明,进釜前pH值在4.5~5.5, DBS用量为TiO2质量的1.0%~3.0%时,能够获得理想包覆.在水热过程中, DBS的引入对锐钛矿型TiO2微晶的生长有抑制作用.由于DBS的包覆,使TiO2的SPS和PL信号强度显著下降,这可能与磺酸基的吸电子性以及表面缺陷等的减少有关. The TiO2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) were synthesized by a solhydrothermal method, and were also characterized by XRD, TEM, Surface Photovoltage Spectroscopy (SPS) and Photoluminescence (PL). The effects of capping DBS on photovohage and photoluminescence performances of TiO2 nanoparticle as well as appropriate capping conditions were principally investigated. The results show that the capping situation is desirable when the pH value and adding DBS amount are in the range of 4.5 -5.5 and 1.0% - 3.0% of TiO2 weight in advance of the hydrothermal process, respectively. The added DBS could inhibit the growth of anatase crystallite during the hydrothermal process. Moreover, the intensities of SPS and PL of TiO2 nanoparticle decreased after DBS was capped, which is possibly attributed to the electrophilic property of sulfonic acid group ( -SO3- ) as well as the decrease of surface defect. Key words TiO2, DBS, Surface capping, Surface photovoltage, Photoluminescence
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2005年第5期807-811,共5页 化学物理学报(英文)
基金 ProjectsupportedbytheNationalNatureScienceFoundationofChina(20431030 20301006) theNatureScienceFoundationofHeilongjiangProvinceofChina(ZJG0404 B0305) theScienceFoundationforExcellentYouthofHeilongjiangProvinceofChina(2002) theSupportingPlanofEducationBureauofHeilongjiangProvince(1054G035) thePostdoctoralScienceFoundationofChina(20040350168)andtheScienceFoundationforExcellentYouthofHeilongjiangUniversityofChina(2003).
关键词 TIO2 DBS 表面包覆 表面光伏 光致发光 TiO2, DBS, Surface capping, Surface photovoltage, Photoluminescence
  • 相关文献

参考文献23

  • 1Cahen D, Hodes G, Grtzel M, Guillemoles J F, Riess I. J.Phys.Chem.B, 2000, 104: 2053.
  • 2Jing L Q, Sun X J, Cai W M, Xu Z L, Du Y G, Fu H G. J.Phys.Chem.Solids, 2003, 64: 615.
  • 3孙宇峰,黄行九,叶刚,王连超,孟凡利,刘伟,刘锦淮.Pt(Ⅳ)修饰的非晶态TiO_2对2,4-二氯苯氧基乙酸的可见光降解[J].Chinese Journal of Chemical Physics,2004,17(1):65-69. 被引量:4
  • 4吴立群 黄培 徐南平 时钧.高校化学工程学报,1996,6:205-205.
  • 5Hazra S K, Roy S, Basu S. Mater.Sci.Eng.B, 2004, 110: 195.
  • 6Stephen M, Alexander Y F. Langmuir, 2004, 20: 2270.
  • 7Stiller S, Gers-Barlag H, Lergenmueller M, Pfl cker F, Schulz J, Wittern K P, Daniels R. Colloids Surf.A, 2004, 232: 261.
  • 8Jing L Q, Xin B F, Yuan F L, Wang B Q, Shi K Y, Cai W M, Fu H G. Appl.Catal.A, 2004, 275: 49.
  • 9Lin Y H, Wang D J, Zhao Q D, Yang M, Zhang Q L. J.Phys.Chem.B, 2004, 108: 3202.
  • 10Jing L Q, Sun X J, Shang J, Cai W M, Xu Z L, Du Y G, Fu H G. Sol.Energy Mater.Sol.Cells, 2003, 79: 133.

二级参考文献17

  • 1J.Callaway 王以铭译.固体量子理论,第1版[M].北京:科学出版社,1984.175.
  • 2苏勉曾.Solid Chemistry Introduction (固体化学导论)[M].Beijing (北京): Beijing University Press (北京大学出版社),1986.109.
  • 3陈云霞 刘维民 张平余 邵士俊.Chem.J.Chin.Univ.(高等学校化学学报),2002,23:1574-1574.
  • 4黄行九 皮宗新 刘锦淮.Chem.J.Chin.Univ.(高等学校化学学报),2003,24:1459-1459.
  • 5李芳柏 李湘中 李新军 万洪富.Acta Chimica Sinica (化学学报),2001,59:1072-1072.
  • 6史彦莉 张校刚 力虎林.Chin.J.Chem.Phys.(高等学校化学学报),2001,22:321-321.
  • 7水淼 岳林海 徐铸德.Acta Phys.Chim.Sinica (物理化学学报),2000,16:459-459.
  • 8童少平 冷文华 张昭 张鉴清.Chin.J.Chem.Phys.(化学物理学报),2002,15:65-65.
  • 9闫鹏飞 周德瑞 王建强 杨立斌 张迪 傅宏刚.Chem.J.Chin.Univ.(高等学校化学学报),2002,23:2317-2317.
  • 10Guo G B,Phys Rev Lett,1997年,78卷,1142页

共引文献39

同被引文献14

  • 1甘玉琴,邹翠娥,杨平,华南平,石恩娴,杜玉扣.Au纳米粒子大小对Au/TiO_2薄膜光催化活性的影响[J].石油化工,2005,34(6):578-581. 被引量:17
  • 2李素琴,罗永松,任沁峰,李家麟.纳米TiO_2-Cu_2O复合膜的制备及其荧光性质的研究[J].化学通报,2007,70(8):629-632. 被引量:2
  • 3Gu G R, He Z, Tao Y C, et al. Conductivity of nanometer TiO2 thin films by magnetmn sputtering[J]. Vacuum, 2003, 70(1): 17 - 20.
  • 4Meyer K, Zimmermann I. Effect of glidants inbinary powder mixtures[J]. Powder Technology, 2004, 139(1): 40 - 54.
  • 5Mao Liqun, Li Qinglin, Zhang Zhijun. Study on surface states of Pt/TiO2 thin film in different atmospheres[J]. Solar Energy, 2007, 81(10): 1280 - 1284.
  • 6Kim J C, Choi J K, Lee Y B, et al. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles[J]. Chemical Communication, 2006, 48:5024 - 5026.
  • 7Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of Cu20/TiO2, Bi203/TiO2 and ZnMnO4/TiO2 heterojunctions[J]. Catalysis Today, 2005, 101(3-4): 315 - 321.
  • 8Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu20/TiO2 heterojunction thin film cathode for photoelectrocatalysis [J]. Solar Energy Materials and Solar Cells, 2003, 77(3): 229 - 237.
  • 9Zhu Hailing, Zhang Junying, Li Chunzhi, et al. Cu20 thin films deposited by reactive direct current magnetron sputtering[J]. Thin Solid Films, 2009, 517(19): 5700 - 5704.
  • 10Andrew M, George H, Sharan B, et al. Thick titanium dioxide films for semiconductor photocatalysis[J]. Journal of Photochemistry and PhotobiologyA: Chemistry, 2003, 160(3):185 - 194.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部