期刊文献+

代价敏感分类算法的实验比较 被引量:14

An Empirical Comparative Study of Cost-Sensitive Classification Algorithms
原文传递
导出
摘要 对8种不同代价敏感分类算法进行了比较研究。目的是通过实验手段,分析不同代价敏感算法的行为和当其归纳过程发生变化时,对错误分类的总代价、高代价错误数量和错误的总数量所产生的影响。对其中的Ada-Cost方法,本文分析了为何其代价调整因子可能对其性能带来负面影响,并实现了2种变体方法,提高了其性能。 This paper describes a study of different cost-sensitive classification algorithms. The purpose of the study is to analyze the behavior of various cost-sensitive algorithms and how the variations in the induction process affect the total misclassification cost, high cost error amount and total misclassification error amount. For the AdaCost method, this paper analyzes why the cost adjustment factor may cause negative effect on its performance, and implements two modification methods that improve performance substantially.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第5期628-635,共8页 Pattern Recognition and Artificial Intelligence
基金 江苏省自然科学基金(No.BK2004001)
关键词 机器学习 代价敏感 决策树 分类 集成学习 Machine Learning, Cost-Sensitive, Decision-Tree, Classification, Ensemble Learning
  • 相关文献

参考文献15

  • 1Breiman L, Friedman J H, Olshen R A, Stone C J. Classification and Regression Trees. Belmont, USA: Wadsworth, 1984.
  • 2Chan P, Stolfo S. Toward Scalable Learning with Non-Uniform Class and Cost Distributions. In: Proc of the 4th International Conference on Knowledge Discovery and Data Mining. New York, USA, 1998, 164-168.
  • 3Provost F, Fawcett T, Kohavi R. The Case against Accuracy Estimation for Comparing Induction Algorithms. In: Proc of the 15th International Conference on Machine Learning. Madison,USA, 1998, 445-453.
  • 4Domingos P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In: Proc of the 5th International Conference on Knowledge Discovery and Data Minging. San Diego, USA,1999, 155-164.
  • 5Domingos P. Knowledge Acquisition from Examples via Multiple Models. In: Proc of the 14th International Conference on Machine Learning. Nashville, USA, 1997, 98-106.
  • 6Bruha I, Kockova S. A Support for Decision Making: Cost-Sensitive Learning System. Artificial Intelligence in Medicine,1994, 6(7): 67-82.
  • 7Turney P. Cost-Sensitive Learning Bibliography. 1997. http://-ai. lit. nrc,ca/bibliographies/cost-sensitive, html.
  • 8Quinlan J R. C4. 5: Program for Machine Learning. San Marco,USA: Morgan Kaufmann, 1993.
  • 9Ting K M. An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE Trans on Knowledge and Data Engineering,2002, 14(3): 659-665.
  • 10Ting K M, Zheng Z. Boosting Cost-Sensitive Trees. In:Proc of the 1st International Conference on Discovery Science. Fukoka, Japan, 1998, 245-255.

同被引文献104

引证文献14

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部