期刊文献+

油气管道缺陷检测的数据处理方法回顾与展望 被引量:10

A Review on Processing Approaches about Defect Data in Inspection of the Oil and Gas Pipeline
下载PDF
导出
摘要 油气管道缺陷检测中的数据处理方法主要包括传统的数据处理方法,如谱分析、统计分析,以及后来发展起来并广泛应用的小波分析、自适应滤波处理、支持向量机、人工神经网络、模式识别、数据融合等新方法。本文分析了各种用于管道缺陷检测的数据处理方法的优缺点,并指出当前研究中所存在的问题。最后探讨了这一领域中可能的发展方向。 The processing approaches about defect data in inspection of the oil and gas pipeline are reviewed, which comprise the traditional data processing, such as spectral analysis, statistical analysis, and wavelet analysis, adaptive filtering technique, statistical processing, support vector machine, artificial neural network, pattern reogntion, data fusion, et al, which are developed. After analyseing their advantages and disadvantages, the paper provides the problems of the processing approaches about defect data in inspection of the oil and gas pipeline. Finally, some research tendencies in this field are presented.
出处 《压力容器》 北大核心 2005年第10期38-43,共6页 Pressure Vessel Technology
基金 高等学校博士学科点专项科研基金项目(20030425014) 中国石油大学优秀博士学位论文培育资助项目(B2005-9)
关键词 油气管道 缺陷检测 数据处理 测量误差 oil and gas pipeline defect inspection data processing
  • 相关文献

参考文献43

  • 1Gregory Piatetsky- Shapiro, Ronald J. Brachman, Tom Khabaza, et al. An Overview of Issues in Developing Industrial Data Mining and Knowledge Discovery Applications.Proceedings of the Second International Conference on Knowledge Discovery and Data Mining ( KDD - 96) [ C ] .Portland, Oregon AAAI press, 1996, August: 89-95.
  • 2王福明,胡志新.相关分析在油气输送管道检漏中的应用[J].油气田地面工程,1998,17(5):13-14. 被引量:6
  • 3P.H. Vieth, S. W Rust and E.R. Statistical Analysis Methods for ILI Metal - loss data[J]. Johnson Corrosion Prevention and Control, 1998,45(1) :20 - 30.
  • 4Mallat SG. Theory for Multiresolution Signal Decomposition:the Wavelet Representation[ J]. IEEE Trans Pattern And Machine Intelligence. 1989,11(7) :74 - 93.
  • 5Marco Ferrante, Bruno Brunone. Pipe System Diagnosis and Leak Iinspection by Unsteady - State Tests. 2. Wavelet Analysis[J]. Advances in Water Resources, 2003(26): 107-116.
  • 6王海生,叶昊,王桂增.基于小波分析的输油管道泄漏检测[J].信息与控制,2002,31(5):456-460. 被引量:41
  • 7黄晶,阙沛文.小波分析在管道缺陷超声检测中的应用[J].传感技术学报,2003,16(3):263-266. 被引量:29
  • 8Staszewski W J. Structural and Mechanical Damage Inspection Using Wavelets [ J ]. The Shock and Vibration Digest,Sage Publications inc, 1998,30(6) :457 - 472.
  • 9Womell U W. Signal Processing with Fractals, A WaveletBased Approach [ M]. Uper Saddle River, NJ, Prentice Hall PTR, 1996:2 - 23.
  • 10Zhang Q, Benveniste A. Wavelet Networks[J]. IEEE Trans Neural Networks 1992, 3(6):89 - 98.

二级参考文献37

  • 1孟子厚,盛胜我,赵松龄.自来水管网相关检漏技术中时延估计方法的选择与综合[J].声学技术,1995,14(1):15-21. 被引量:11
  • 2刘镇清,李成林,姚峻峰.增强粗晶材料超声探伤信号的分离谱技术[J].无损检测,1995,17(5):121-123. 被引量:17
  • 3曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 4秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1992..
  • 5蒋焕文 孙续.电子测量[M].中国计量出版社,1995.238-249.
  • 6梁穗.超声检测信号的自适应滤波[M].上海:同济大学,1996..
  • 7AbhijitS Pandya RobertB Macy著 刘勇等译.Pattern Recognition with neural networksin C++[M].北京:电子工业出版社,1998..
  • 8Mallat S.. Multiresolution approximation and wavelet orthornormal bases of L^2 [J] . Trans Amer Math Soc, 1989, 315(1): 69-87.
  • 9Mallat S., Zhong S.. Characterization of signals from multiscale edges[J]. IEEE Trans PAMI, 1992, 14(7): 710 -717.
  • 10Donoho D. L.. De- noising via soft- thresholding,http://www.star. stanford, edu/- donoho/Reports/index.html, 1992.

共引文献2502

同被引文献84

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部