期刊文献+

基于UKF的神经网络自适应全局信息融合方法 被引量:16

Study on Nonlinear Optimal Estimation for Neural Networks Data Fusion
下载PDF
导出
摘要 为了解决神经网络(NN)在数据融合过程中权值实时更新问题,依据神经元激活函数的非线性特点,提出了一种利用Unscented卡尔曼滤波(UKF)实现神经网络权系数自适应调整的模型及方法,从而使全局融合信息最优.并分别以仿真数据及DGPS/GPS/RLC/罗经等设备组成的舰船导航系统实测数据为例,首先对各局部滤波器进行UKF滤波,然后分别利用神经网络卡尔曼滤波(NNKF)及神经网络非线性卡尔曼滤波(NNUKF)进行数据融合,仿真和试验结果表明,所提方案对提高整个系统的精度和运算速度是行之有效的. A new model and algorithm to realize adaptive adjustment of the weights of NN and to make global fusion information optimal were presented. The method utilizes Unscented Kalman filter (UKF) for nonlinear optimal estimation to solve the problem that weights of neural networks are not be on-line trained in data fusion. Applies the above project to a multi-sensors vessel integrated navigation system, obtains actual data from the integrated navigation system of DGPS/GPS/RLC/compass. First, using UKF methods estimates and filters the location information, then, NNKF and NNUKF are used to fuse them. The results of experiment and simulation show that the proposed approach is very useful for improving the accuracy and calculation speed of the system.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第10期1914-1916,共3页 Acta Electronica Sinica
关键词 信息融合 UKF 神经网络 组合导航 信息分配 data fusion Unscented Kalman filter neural networks integrated navigation information allotment
  • 相关文献

参考文献8

  • 1Chowdhury F N.A Neural approach to Data Fusion[A].Proc.American control Conf[C].USA:Seattle,WA,1995.1693-1697.
  • 2陶俊勇,温熙森,陶利民.组合导航系统的神经元信息融合模型[J].国防科技大学学报,2002,24(3):81-85. 被引量:4
  • 3Simon Haykin.Neural Networks:A Comprehensive Foundation[M].2nd Edition.USA:Prentice Hall PTR.1998.
  • 4S J Julier,J K Uhlmann.A new Extension of the Kalman filter to Nonlinear Systems[A].In Proceedings of the SPIE Aero sense International Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,Florida:April,1997.20-25.
  • 5E Awan,A T Nelson.Neural dual extended Kalman Filtering:applications in speech enhancement and monaural blind signal separation.In Proc of IEEE Workshop on Neural Networks for Signal Processing VII[C].Florida:September 1997.
  • 6S J Julier.The scaled unscented transformation[J].In Proceedings of American Control Conference,Anchorage,AK,USA,May 2002,6:4555-4559.
  • 7J K Uhlmann.Algorithms for multiple target tracking[J].American Scientist,1992,80(2):128-141.
  • 8Krakiwsky E J.Harris C B,Wang R V C.A Kalman Filter for Integrating Dead Reckoning,Map Match and GPS Position[A].Proceedings of IEEE Position,Location and Navigation Symposium[C].USA,Orlando:Institute of Navigation,1988.39-46.

二级参考文献4

  • 1Kim K H. Development of Track to Track Fusion Algorithms [A]. Proc. American Control Conf., 1994, 1037-1041.
  • 2Chowdhury F N. A Neural Approach to Data Fusion[A]. Proc. American Control Conf., 1995, 1693-1697.
  • 3Carlson N A. Federated Filter for Fault-tolerant Integrated Navigation[R]. N 96-13415.
  • 4马昕,袁信.基于神经元的容错组合导航系统设计[J].宇航学报,1999,20(2):7-13. 被引量:7

共引文献3

同被引文献134

引证文献16

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部