期刊文献+

基于尺度空间理论的Harris角点检测 被引量:79

Harris corner detection based on theory of scale-space
下载PDF
导出
摘要 研究了一种基于尺度空间理论的Harris角点检测方法。建立Harris函数的尺度空间表示,检测每个尺度水平上的极值,利用迭代算法验证每个尺度水平上LoG算子是否获得最大值,从而得到特征角点的位置及其尺度。该方法在保持Harris角点不受光照条件及摄像机姿态变化影响的同时,还能检测出多尺度下的特征点。通过实验验证该方法具有尺度不变特性,适用于尺度变化较大的视觉系统。 An improved method of Harris corner based on the theory of scale-space was described, and a scale-space representation of Harris corner by which local maximum points were detected at each scale level was established. The extrema over scale of the Laplacian of Gaussian (LOG) which was used to select the scale of interest points were applied. For each point, an iterative algorithm can be used to detect the location and the scale of interest points simultaneously. This method not only maintains the advantages of Harris corner which is invariant to the changes of intensity and camera pose but also can be used in multi-scale. It is proved to be scale invariant by experiments and can be applied to the vision system with significant scale changes.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第5期751-754,共4页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60234030)
关键词 HARRIS角点 尺度空间 LOG算子 尺度不变性 Harris corner scale-space Laplacian of Gaussian operator scale invariant
  • 引文网络
  • 相关文献

参考文献11

  • 1Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381.
  • 2Pikaz A, Dinstein I. Using simple decomposition for smoothing and feature point detection of noisy digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8): 808-813.
  • 3Harris C, Stephens M. A combined corner and edge detector[A]. Matthews M M. Proceedings of the Fourth Alvey Vision Conference[C]. Manchester: the University of Sheffield Printing Unit, 1988. 147-151.
  • 4Deriche R, Giraudon G. A computational approach for corner and vertex detection[J]. International Journal of Computer Vision, 1993, 10(2): 101-124.
  • 5Baker S, Nayar S K, Murase H. Parametric feature detection[J]. International Journal of Computer Vision, 1998, 27(1): 27-50.
  • 6Parida L, Geiger D, Hummel R. Junctions: Detection, classification, and reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 687-698.
  • 7Schimid C, Mohr R, Bauckhage C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172.
  • 8Lindeberg T. Scale-space theory: A basic tool for analysing structures at different scales[J]. Journal Applied Statistics, 1994, 21(2): 223-261.
  • 9Babaud J, Witkin A P, Baudin M, et al. Uniqueness of the Gaussian kernel for scale-space filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 26-33
  • 10Schmid C, Mohrand R, Bauckhage C. Comparing and evaluating interest points[A]. Ahuja N, de Sai U. Proceedings of the Sixth International Conference on Computer Vision[C]. Washington: IEEE Computer Society, 1998. 230-235.

二级参考文献1

  • 1徐建华,图象处理与分析,1992年,63页

共引文献5

同被引文献592

引证文献79

二级引证文献428

;
使用帮助 返回顶部