期刊文献+

Comment on “Computer Algebra and Solutions to the Karamoto-Sivashinsky Equation” [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39] 被引量:126

Comment on “Computer Algebra and Solutions to the Karamoto-Sivashinsky Equation” [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39]
下载PDF
导出
摘要 In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
作者 LIU Chun-Ping
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期609-610,共2页 理论物理通讯(英文版)
基金 国家自然科学基金,江苏省教育厅自然科学基金
关键词 algebraic method exact solution Karamoto-Sivashinsky equation 计算机代数 Karamoto-Sivashinsky方程 精确解 Riccati方程 非线性发展方程
  • 相关文献

参考文献8

  • 1E.G. Fan, Phys. Lett. A 277 (2000) 212.
  • 2B. Li, Y. Chen, and H.Q. Zhang, Chaos, Solitons & Fra-tals 15 (2003) 647.
  • 3Z.S. Lu and H.Q. Zhang, Chaos, Solitons & Fractals 17(2003) 669.
  • 4F.D. Xie and Z.T. Yuan, Commun. Theor. Phys., (Beijing, China) 4a (2005) 39.
  • 5S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Phys. Lett. A289 (2001) 69.
  • 6Z.Y. Yan and H.Q. Zhang, Phys. Lett. A 285 (2001) 355.
  • 7C.P. Liu and X.P. Liu, Phys. Lett. A 303 (2002) 197.
  • 8Z.T. Fu,S.D. Liu, and S.K. Liu, Commun. Theor. Phys.(Seijing, China) 39 (2003) 531.

同被引文献147

引证文献126

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部