期刊文献+

纯正半群上的同余扩张(一) 被引量:1

Congruence Extensions on Regular Semigroups (1)
原文传递
导出
摘要 刻划半群上的同余及其扩张是半群的代数理论中的一个非常重要的课题.本文讨论了带上的同余的正规性和不变性以及在其Hall半群上的扩张,从同余扩张的角度刻划了带上的同余的性质,给出了扩张的极大、极小同余的描述. It is very importent to study congruences and congruence extensions on semigroups. Many authors, such as Petrich, Pastijn, Jones, Trotter and Stralka etc.,put their most interests into this field. Some kinds of congruences on semigroups had been investigated by means of congruence pairs, see, for example, [1],[5],[6] and [7]. In particular, the descriptions for the maximum idempotent-separated congruences and the minimum group congruences on many kinds of semigroups were given. On the other hand, the class of semigroups with the congruence extension property was involved and described, see [4], [9] and [10]. In this paper, we introduce normalities and invariances for congruences on bands, and discuss that congruences on bands extend to fully regular subsemigroups of Hall semigroups of bands.In addition, we characterize congruences on bands, such as completely invariant congruences and characteristic invariant congruences on bands according to congruence extensions on semigroups, and describe the maximum congruence extension and the minimum congruence extension for a given congruence on a band.
作者 唐西林
机构地区 兰州大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1996年第1期50-56,共7页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金 博士点基金资助课题.
关键词 同余扩张 正规同余 半群 纯正半群 congruence extension, normal congruence, fully invariant congruence, characterized invariant congruence
  • 相关文献

参考文献1

  • 1唐西林,博士学位论文,1993年

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部