期刊文献+

基于支持向量机的大型电厂锅炉飞灰含碳量建模 被引量:98

SUPPORT VECTOR MACHINE MODELING ON THE UNBURNED CARBON IN FLY ASH
下载PDF
导出
摘要 飞灰含碳量是影响锅炉热效率的一个重要因素,影响燃煤锅炉飞灰含碳量的因素多而且复杂,对锅炉飞灰含碳量特性进行建模预测并结合优化算法实现燃烧优化是降低锅炉飞灰含碳量的有效方法。该文应用支持向量机算法建立了大型四角切圆燃烧锅炉飞灰含碳量特性的模型,并利用飞灰含碳量的热态实炉试验的数据对模型进行了校验,对支持向量机学习算法中参数的选择进行了探讨,获得了最佳学习参数。结果说明支持向量机与其它建模方法相比具有泛化能力好,计算速度快等优点,是锅炉飞灰含碳量特性建模的有效工具。 Unburned carbon content in the fly ash is a main factor that has great impacts on the boiler efficiency. It was affected by many factors and complicated. Building a model to predict unburned carbon content in the fly ash is a good way to optimize the coal combustion and then reduce unburned carbon content. In this work, a support vector machine model predicting the unburned carbon content in the fly ash of a high capacity boiler was developed and verified. Good predicting performance was achieved with the proper learning parameters. The modeling results show that support vector machine is a good tool for building combustion models and has better generalization ability and higher calculation speed comparing with other modeling approaches.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第20期72-76,共5页 Proceedings of the CSEE
基金 国家自然科学基金(50576081 2030707)~~
关键词 热能动力工程 锅炉 飞灰含碳量 支持向量机 Thermal power engineering Boiler Unburned carbon content Support vector machine
  • 相关文献

参考文献16

二级参考文献119

  • 1边肇祺.模式识别[M].北京:清华大学出版社,1998..
  • 2陈学俊 陈听宽.锅炉原理(第二版)[M].西安:西安交通大学出版社,1991..
  • 3.GB7252-87.变压器油中溶解气体分析和判断导则[S].,..
  • 4Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 5Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 6Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 7Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 8Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 9Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 10Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.

共引文献2984

同被引文献953

引证文献98

二级引证文献985

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部