期刊文献+

对偶Brunn-Minkowski-Firey定理 被引量:6

THE DUAL BRUNN-MINKOWSKI-FIREY THEOREM
下载PDF
导出
摘要 本文引入了星体的对偶混合均质积分和对偶混合p均质积分的概念,利用积分的方法证明了几个涉及对偶混合均质积分的不等式,推广了对偶的Brunn Minkowski理论. This paper introducs the definitions of the dual mixed Quermass integrals and the dual mixed ρ-Quermass integrals. By applying the integral methods, we prove some inequalities for the dual mixed Quermass integrals. Moreover, we generalize the dual Brunn-Minkowski theory.
出处 《数学杂志》 CSCD 北大核心 2005年第5期545-548,共4页 Journal of Mathematics
基金 国家自然科学基金资助项目(10271071)
关键词 星体 径向函数 对偶混合体积 对ρ-矿均质积分 Brunn-Minkowski定理 star body, radial function dual mixed volume dual mixed ρ-Quermass integrals Brunn-Minkowski theorem
  • 相关文献

参考文献9

  • 1Schneider. R. Convex Bodies. The Brurm-Minkowski theory[M]. Cambridge Univ. Press, Cambridge, 1993.
  • 2冷岗松,张连生.凸体均质积分的极值问题[J].中国科学(A辑),2001,31(3):204-212. 被引量:4
  • 3冷岗松.凸体的曲率映象与仿射表面积[J].数学学报(中文版),2002,45(4):797-802. 被引量:4
  • 4Lutwak E. Dual mixed volume[J]. Pacific J. Math. , 1975,58:531-538.
  • 5Gardner R. J. Geometric tomography[M]. New York:Cambridge Univ. Press,1995.
  • 6Firey W.J. p-means of convexboclies[J]. Math. Scand. , 1962,10: 17-24.
  • 7Lutwak E. The Rrunn-Minkowski-Firey theory I:Mixed volumes and the Minkowski problem[J]. J.Differential Geom, 1993,38 : 131-150.
  • 8Lutwak E. Intersection bodies and daul mixed volumes[J]. Adv. Math. , 1988,71:232-261.
  • 9Busemann H. Convex surfaces[M]. New York: Interscience,1958.

二级参考文献17

  • 1杨路 张景中.伪对称集与有关的几何不等式[J].数学学报,1986,29(6):802-806.
  • 2张景中 杨路.有限点集在伪欧空间的等长嵌入[J].数学学报,1981,4(24):481-487.
  • 3Alexander R., Zonoid theory and Hilbert's fourth problem, Geom. Dedicata, 1988, 28: 199-211.
  • 4Ball K. M., Shadows of convex bodies, Trans. Amer. Math. Soc., 1991, 327: 891-901.
  • 5Bourgain J., Milman V., New volume ratio properties for convex symmetric bodies in Rn, Ivent. Math., 1987,88: 319-340.
  • 6Brannen N. S., Volumes of projection bodies, Mathematika, 1996, 43: 255-264.
  • 7Gordon Y., Meyer M., Reiser S., Zonoids with minimal volume product-a new proof, Proc. Amer. Math.Soc., 1988, 104: 273-276.
  • 8Guggenheimer H., Applicable Geometry, Geometry, Global and Local Convexity, R. E. Krieger, Huntington,NY 1997.
  • 9Kaiser M. J., The lower bound for the volume product Vn(K)Vn(K*), Appl. Math. Lett., 1994, 7: 1-5.
  • 10Lutwak E., On some affine isoperimetricc inequalities, J. Differential Geom., 1986, 23: 1-13.

共引文献6

同被引文献34

  • 1赵长健,何斌吾,冷岗松.质心体与射影体的极[J].数学学报(中文版),2006,49(3):679-686. 被引量:1
  • 2熊革,倪建华.单形的径向平均体(英文)[J].数学杂志,2006,26(3):261-264. 被引量:1
  • 3王卫东,冷岗松.Inequalities relating to L_p-version of Petty's conjectured projection inequality[J].Applied Mathematics and Mechanics(English Edition),2007,28(2):269-276. 被引量:1
  • 4Firey W J. p-means of convex bodies [J]. Math Scand, 1962,10 : 17-24.
  • 5Firey W J. Some applications of means of convex bodies [ J ]. Pacific J Math, 1964,14:53-60.
  • 6Lutwak E. The Brunn-Minkowski-Firey theory Ⅰ: mixed volumes and the Minkowski problem [ J ]. J Differential Geom, 1993,38 : 131-150.
  • 7Lutwak E. The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface areas [J]. Advances in Mathematics, 1996,118:244-294.
  • 8Lutwak E. Dual Mixed Volumes [ J ]. Pacific J Math, 1975, 58:131-150.
  • 9Grinberg E, Zhang G Y. Convolutions, transforms,and convex bodies [ J ]. Proceedings of the London Mathematical Society, 1999,78:77-115.
  • 10Cheung W S, Zhao C J. Width-integrals and affine surface area of convex bodies [J]. Banach J Math Anal, 2008 ( 1 ) : 70-77.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部