期刊文献+

实数编码混沌量子遗传算法 被引量:41

Real-coded Chaotic Quantum-inspired Genetic Algorithm
下载PDF
导出
摘要 基于量子位的混沌特性和相干特性,提出一种实数编码混沌量子遗传算法(RCQGA).该算法在解空间内将实数染色体通过反向变换映射到量子位,采用量子位概率指导的实数交叉与混沌变异相结合的方法对实数染色体进行演化搜索.实验结果表明,RCQGA不仅可以有效避免二进制编码QGA早熟收敛的缺点,而且可以减少寻优的计算复杂度,具有收敛速度快、稳定性好、寻优能力强、精度提高容易等优点,适用于工程应用中的复杂函数优化问题. This paper proposed a real-coded chaotic quantum-inspired genetic algorithm (RCQGA) based on the chaotic and coherent characters of Q-bits. In this algorithm, real chromosomes are inversely mapped to Q-bits in the solution space. Q-bits probability guided real cross and chaos mutation are used to real chromosomes evolution and searching; Simulation shows that the proposed RCQGA not only avoids the shortcoming of binary system coding based QGA prematurity but it also reduces the optimizing complexity with faster convergence speed, more stability, more powerful optimizing ability.
出处 《控制与决策》 EI CSCD 北大核心 2005年第11期1300-1303,共4页 Control and Decision
基金 国家部级基金项目(51430804QT2201) 四川省青年基金项目(0326ZQ026-033)
关键词 混沌 遗传算法 量子遗传算法 实数编码量子遗传算法 Chaos Genetic algorithm Quantum-inspired genetic algorithm Real-coded chaotic quantum-inspired genetic algorithm
  • 相关文献

参考文献7

  • 1Srinivas M, Patnaik L M. Genetic Algorithms: A Survey [J]. Computer , 1994,27(6): 17-26.
  • 2Bennett C H, Shor P. Quantum Information Theory[J]. IEEE Trans on Information Theory, 1998,44 (6):2724-2742.
  • 3Narayanan A, Moore M. Quantum-inspired Genetic Algorithms [A ]. Proc of IEEE Int Conf on Evolutionary Computation [C]. Nagoya: IEEE Press,1996: 61-66.
  • 4Yang S Y, Jiao L C. The Quantum Evolutionary Programming [A]. 15th Int Conf on Computational Intelligence and Multimedia Applications [ C ]. IEEE Press, 2003:362-367.
  • 5Zhang G X, Gu Y J,Hu L Z, et al. A Novel Genetic Algorithm and Its Application to Digital Filter Design[A]. Proc on IEEE Intelligent Transportation Systems[C]. IEEE Press, 2003, 2:1600-1605.
  • 6Chen H, Zhang J S. Chaos Updating Rotated Gates Quantum-inspired Genetic Algorithm[A]. IEEE Proc on Communications, Circuits and Systems [ C ].Chengdu: UESTC Press, 2004:1108-1112.
  • 7商允伟,裘聿皇.适应值共享对遗传算法选择概率的影响分析[J].控制与决策,2003,18(6):708-711. 被引量:8

二级参考文献6

  • 1Li J P, Balazs M E, Parks G T, et al. A species conserving genetic algorithm for multimodal function optimization [J ]. Evolutionary Computation, 2002, 10 ( 3 ):207-234.
  • 2Deb K, Goldberg D E. An investigation of niche and species formation in genetic function optimization[A].Proc 3rd Int Conf Genetic Algorithms [C ]. CA : Morgan Kaufmann, 1989.42-50.
  • 3Sareni B, Krahenbuhl L. Fitness sharing and niching methods revisited [J]. IEEE Trans on Evolutionary Computation, 1998,2 (3) : 97-106.
  • 4Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization[A]. Proc 2nd Int Conf Genetic Algorithms [C ]. NJ: Lawrence Erlbaum, 1987.41-49.
  • 5Miller B L, Shaw M J. Genetic algorithms with dynamic niche sharing for multimodal function optimization[A]. Proc 3rd IEEE Conf Evolutionary Computation[C]. Piscataway, NJ : IEEE Press, 1996. 786-791.
  • 6Goldberg D E, Wang L. Adaptive niching via coevolutionary sharing[R]. IlliGAL Report 97007,1997.

共引文献7

同被引文献457

引证文献41

二级引证文献829

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部