期刊文献+

基于遗传算法的超精密切削表面粗糙度预测模型参数辨识及切削用量优化 被引量:16

PREDICTIVE MODELING OF SURFACE ROUGHNESS AND CUTTING PARAMETERS OPTIMIZATION IN ULTRA-PRECISION TURNING BASED ON GENETIC ALGORITHM
下载PDF
导出
摘要 建立易于分析各切削用量对粗糙度影响关系的表面粗糙度预测模型和最优的切削用量组合,是超精密切削加工技术的不断发展的需要。针对最小二乘法和传统优化方法的不足,提出了将遗传算法用于超精密切削表面粗糙度预测模型的参数辨识,并用于求解最优切削用量,给出了金刚石刀具超精密切削铝合金的表面粗糙度预测数学模型和切削用量优化结果,进行了遗传算法和常规优化算法的比较,结果表明遗传算法较最小二乘法和传统的优化方法更适合于粗糙度预测模型的参数辨识及保证切削用量的最优。 In ultra-precision turning process, the modeling of surface roughness and the optimization of cutting parameters are the key factors to improve the quality of products and rise the efficiency of equipment. The accurate prediction of surface roughness and optimal cutting parameters are urgently required with the progress in ultra-precision manufacturing. To meet the requirement, the application of genetic algorithm for the surface roughness prediction model and cutting parameters optimization in ultra-precision turning is proposed by a practical example. Mathematics model is introduced and optimal results are given. The prediction model and optimal cutting parameters using genetic algorithm are compared with least square method and traditional optimal results. Comparison shows that genetic algorithm is more suitable than traditional optimal methods in terms of modeling and guaranteeing prediction accuracy and cutting parameters optimization.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第11期158-162,共5页 Journal of Mechanical Engineering
基金 国家科学预研基金资助项目(18.2.1.1)。
关键词 超精密切削 遗传算法 表面粗糙度预测模型 优化 Genetic algorithm optimization Surface roughness prediction model Cutting parameters Ultra-precision turning
  • 引文网络
  • 相关文献

参考文献6

  • 1Lennart L. Convergence analysis of parametric identification methods. IEEE transactions on Automatic Control,1978, AC-23:770~783.
  • 2Van Luttervelt C A, Childs T H C, Jawahir I S, et al. Present situation and future trends in modelling of machining operations. In: Progress Report of the CIRP working group on ‘Modelling of machining operations', Annals of the CIRP,1998, 47(2): 587~626.
  • 3Conceicao Antonio C A, Paulo Davim J. Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model. Composites, 2002, Part A(33): 213~219.
  • 4Homaifar A, Lai S, H-Y Qi X. Constrained optimization via genetic algorithms. Simulation, 1994, 62(4): 242~254.
  • 5Joines J A, Houck C R. On the use of non-Stationary penalty functions to solve nonlinear constrained optimization problems with gas. In: Proceedings of the IEEE ICEC,1994:579~584.
  • 6Michalewicz Z, Nazhiyath G. Genocop Ⅲ: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In: Proceedings of the 2nd IEEE International Conference on Evolutionary Computation, 1995, 2:647~651.

同被引文献108

引证文献16

二级引证文献66

;
使用帮助 返回顶部