期刊文献+

扭矩波动对齿轮时变系统拍击门槛转速的影响

Influence of Torque Fluctuation on Rattling Threshold Speed of a Gear System with Time-varying Meshing Stiffness
下载PDF
导出
摘要 建立了具有时变啮合刚度的二级齿轮系统的动力学方程式,它是一个具有时变系数的线性动力系统。用算符分解算法(AOM)研究了扭矩波动和时变啮合刚度对拍击门槛转速的影响。根据计算结果发现,时变啮合刚度可以导致拍击;齿轮啮合频率等于派生系统的固有频率引起的共振是产生拍击的原因之一;低速端的扭矩波动对系统拍击门槛转速影响较小,而高速端的扭矩波动对拍击门槛转速影响较大;在大部分情况下,考虑时变啮合刚度的二次谐波分量后,拍击门槛转速稍有下降。 The governing equation of a gear system with time-varying meshing stiffness is established. Because of the meshing stiffness of a gear pair, the governing equation denotes a linear dynamic system with periodic time-varying coefficient. A-operator method (AOM) is used to study the influence of the torque fluctuation and time-varying meshing stiffness on rattling threshold speed of the gear system. Calculation results show that time-varying meshing stiffness and torque fluctuation may cause the rattle, one of the reasons for which is the resonance caused by meshing frequency when it is equal to the inherent frequency of the derived system. The torque fluctuation on the higher speed shaft influences the rattling threshold speed more greatly than on the lower speed shaft. In many cases, when second components of meshing frequency are considered, rattling threshold speed will decrease a little.
出处 《机械科学与技术》 CSCD 北大核心 2005年第12期1416-1419,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 上海市高等学校科学技术发展基金项目(03OB42) 陕西省自然科学基金项目(2003E202)资助
关键词 时变啮合刚度 扭矩波动 算符分解算法(AOM) 拍击门槛转速 离心压缩机 time-varying meshing stiffness torque fluctuation a-operator method (AOM) rattling threshold speed centrifugal air compressor
  • 引文网络
  • 相关文献

参考文献10

  • 1张锁怀,李忆平,丘大谋.齿轮耦合的转子-轴承系统非线性动力特性的研究[J].机械工程学报,2001,37(9):53-57. 被引量:31
  • 2Hevzat H. Dynamic analysis of high speed gears by using load static transmission error[J]. Journal of Sound and Vibration, 1988,125(1):71-83.
  • 3Kahraman A,(O)zgüven H N, Houser D R, Zkrajsek J J. Dynamic analysis of geared rotors by finite elements[J]. ASME Journal of Mechanical Design, 1992,114:507-514.
  • 4Kahraman A, Singh R. Non-linear dynamics of a geared rotorbearing system with multiple clearances[J]. Journal of Sound and Vibration, 1991,144(3):469-506.
  • 5Kahraman A. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system [J]. Journal of Sound and Vibration, 1991,146(1):135-156.
  • 6Adomian G. Solution of coupled nonlinear partial differential equations by decomposition [J]. Computer Math. Applic,1996,31(6):117-120.
  • 7方锦清,姚伟光.逆算符方法求解非线性动力学方程及其一些应用实例[J].物理学报,1993,42(9):1375-1384. 被引量:30
  • 8李 华,沈允文,孙智民,徐国华.基于A-算符方法的齿轮系统的分岔与混沌[J].机械工程学报,2002,38(6):11-15. 被引量:17
  • 9张锁怀,沈允文,董海军,刘梦军.齿轮时变系统对扭矩激励的响应[J].航空动力学报,2003,18(6):737-743. 被引量:8
  • 10Cai Y. Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon(A new stiffness function of helical involute tooth pair)[J]. ASME Journal of Mechanical Design, 1995,117(9):460-468.

二级参考文献13

  • 1方锦清,姚伟光.逆算符方法求解非线性动力学方程及其一些应用实例[J].物理学报,1993,42(9):1375-1384. 被引量:30
  • 2Kahraman A zgüven H N Houser D R et al.Dynamic Analysis of Geared Rotors by Finite Elements[J].ASME Journal of Mechanical Design,1992,114:507-514.
  • 3李华.[D].西安:西北工业大学,2002.
  • 4方锦清,1992年
  • 5方锦清,1992年
  • 6陈之江,REDUCE语言简明教程,1990年
  • 7Shiau T N,ASME J Engineering Gas Turbines Power,1999年,121卷,7期,494页
  • 8Chen Chinshong,ASME J Vibration Acoustics,1997年,119卷,1期,85页
  • 9Cai Y,ASME J Mech Design,1995年,117卷,9期,460页
  • 10张直明,滑动轴承的流体动力润滑理论,1986年

共引文献71

;
使用帮助 返回顶部