期刊文献+

基于库存水平的ARMA(1,1)需求条件下目标库存水平优化方法 被引量:3

Optimization Model of Base Stock Level under Inventory-level-dependent ARMA(1,1) Demand
原文传递
导出
摘要 为降低企业库存成本,考虑ARMA(1,1)过程且受到库存水平影响的需求情形,建立定期库存策略的目标库存水平优化模型,提出该模型的求解算法,最后结合数例验证模型的实用性和可操作性,并分析需求自相关程度和需求对库存水平的依赖度、进货提前期等因素对目标库存量的影响,得出:目标库存量随进货提前期和需求自相关程度的提高而上升,若需求自相关程度越大,目标库存量提高得越快;若需求与库存量之间呈现多项式函数关系,目标库存量随需求对库存的依赖度提高而上升,且上升速度逐渐加快;若需求与库存量之间呈指数函数关系,目标库存水平随需求对库存的依赖度提高而基本不变.当需求对库存的依赖度较小时,目标库存水平呈现很小的下降趋势,反之,基本不变. Based on a first order autoregressive and moving average (i. e. ARMA(1,1)), inventory-level-dependent demand, the optimization model of the base-stock level in periodic review strategy is developed. An algorithm is presented to find the solution to this model. At last, a numerical example is given to verify the availability of this model, as well as to examine the impacts of demand parameters, degree of demand dependence on the inventory and replenishment lead time on the base stock level. It can be shown from analysis that the base stock level is increasing in replenishment lead time and demand autocorrelation degree, the increasing rate of base stock level is increasing in demand autocorrelation degree. It can also be shown that,when the demand is a pesynomial function of the inventory level, the base stock level is increasing in the level of demand dependence on the inventory and the increase rate in the base stock level is also increasing in the level of demand dependence on the inventory. At last, it is shown that, when the demand is an exponential function of the inventory level, the base stock level maintains nearly stable as the degree of demand dependence on inventory increases, however, the base stock level presents a slight decline when the level of demand dependence on the inventory is lower.
作者 汪传旭
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第11期28-34,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70573068) 上海市社会科学基金(05BJB014) 上海市重点学科建设项目(T0602)
关键词 库存策略 目标库存 定期库存补充 ARMA(1 1)需求 inventory strategy base stock periodic review ARMA(1,1) demand
  • 相关文献

参考文献8

  • 1Veinott A F. Optimal policy for a multi-product, dynamic, non-stationary inventory problem[J]. Management Science, 1965, 12(3): 206 - 222.
  • 2Inderfurth K. Multistage safety stock planning with item demands correlated across products and through time [ J ]. Production and Operations Management, 1995,4(2): 127 - 144.
  • 3Erkip N, Hausman W H, Nahmias S. Optimal centralized ordering policies in multi-echelon inventory systems with correlated demands[J]. Management Science,1990,36(3) :381 - 392.
  • 4Wolfe H B. A model for control of style merchandise[J]. Industrial Management Review,1968, 9(2) :69 - 82.
  • 5Urban T L. An inventory-theoretic approach to product assortment and shelf-space allocation[J]. Journal of Retailing, 1998, 74(1) :15- 35.
  • 6Yang M H, Chen W C. A study on shelf space allocation and management[ J]. International Journal of Production Economics, 1999,60-61, 309-317.
  • 7Urban T L. A periodic review model with serially-correlated inventory-level-dependent demand [J]. International Journal of Production Economics, 2005,95 (3): 287 - 295.
  • 8Nahmias S. Production and Operations Analysis[M] .3rd Edition, Irwin, Chicago, 1997,235 -278.

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部