期刊文献+

改进的BP算法在表面肌电信号识别中的应用 被引量:5

Application of improved BP algorithm to surface EMG signal classification
下载PDF
导出
摘要 针对肌电信号的非平稳特性,采用小波变换方法对表面肌电信号进行分析,提取小波系数幅值的最大和最小值构造特征向量,输入BP神经网络可进行模式识别,网络经过学习能够成功地从表面肌电信号中识别展拳、握拳、前臂内旋、前臂外旋4种运动模式。比较了标准的BP算法和用贝叶斯正则化与Levenberg-Marquardt算法相结合的改进BP网络训练的结果。实验表明,改进的BP网络在训练速度和识别精度上都比标准的BP算法有了很大提高,这对于肌电假肢的控制具有良好的应用前景。 The application of improved BP neural network together with the wavelet transform to the classification of surface EMG signal is described. The data reduction and preprocessing of the signal are performed by wavelet transform. The network can identify such four kinds of forearm movements with a high accuracy as hand extension, clench fist, forearm pronation and forearm supination. This paper compares the results by standard BP algorithm with that of Bayesian regularization together with LM algorithm. Experimental result shows that the improved BP neural network has a great potential when applied to electromechanical prosthesis control because of its enhanced training speed and identification accuracy.
作者 张坤 王志中
出处 《医疗卫生装备》 CAS 2005年第12期17-19,共3页 Chinese Medical Equipment Journal
基金 国家973项目(2005CB724303)资助。
关键词 小波变换 BP神经网络 贝叶斯正则化 LM算法 肌电信号 wavelet transform BP neural network Bayesian regularization LM algorithm surface EMG
  • 相关文献

参考文献6

  • 1Deluca C.Phsiology and mathe matics of myoelectric signals.IEEE Trans Biomed Eng, 1979,26(6):313-325.
  • 2韩立群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002..
  • 3U nser M, Aldroubi A. A review of wavelets in biomedical applications. Proc of IEEE, 1996,84(4):626-638.
  • 4Mac Kay DJC. Neural Computation, 1992.448-472.
  • 5戴葵.神经网络应用技术[M].北京:国防科技大学出版社,1998..
  • 6许东.吴静.基于MATLAB 6.x的系统分析与设计—神经网络.第2版[M].西安:西安电子科技大学出版社,2002.21-24.

共引文献6

同被引文献33

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部