期刊文献+

一类捕食与被捕食系统正平衡解的存在性 被引量:2

Existence of positive solutions for a kind of predator-prey system
下载PDF
导出
摘要 目的研究一类捕食与被捕食系统的平衡态方程。方法解耦和全局分歧理论等。结果得到了该系统正平衡解存在的充分条件。结论当捕食者的出生率在某一范围取值时,正平衡解存在。 Aim To study the steady-state equation of a kind of reaction-difussion equation modelling two species which are prey u and predator v inhabiting the same bounded region. Methods Using the decoupling and global bifurcation theory. Results A sufficient condition of the existence of positive solutions to the system is obtained. Conclusion Positive solutions exist when the birth-rate of the predator belongs to a range.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期680-682,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10071048)
关键词 主特征值 最大值原理 全局分歧 principal eigenvalue maximum principle global bifurcation
  • 相关文献

参考文献7

  • 1BLAT J, BROWN K J. Bifurcation of steady-state solutions in predator-prey and competition systems [J]. Proc Roy Soc Edinburgh Sect A, 1984, 97:21-34.
  • 2DANCER E N, Lopez-Gomez J, ORTEGA R. On the spectrum of some linear noncooperative elliptic systems with radial symmetry[J]. Differential and Integral Equations, 1995, 8(3):515-523.
  • 3BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. Siam J Math Anal, 1986, 17:1 339-1 353.
  • 4WU J H. Maximal attractor, stability and persistence for prey-predator model with saturation [J]. Math Comput Modelling, 1999, 30:7-16.
  • 5窦家维.一类具有扩散的SI传染病模型[J].西北大学学报(自然科学版),2003,33(1):1-4. 被引量:2
  • 6YE Q X, LI Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing:Science Press, 1990.
  • 7Smoller J. Shock Waves and Reaction-diffusion Equations[M]. New York-Springer-Verlag, 1983.

二级参考文献3

共引文献1

同被引文献14

  • 1ZHENG Si-ning,LIU Jing.Coexistence solutions for a reaction-diffusion system of unstirred chemostat model[J].Appl Math Comput,2003,145(2/3):579-590.
  • 2SO J W,WALTMAN P.A nonlinear boundary value problem arising from competition in the chemostat[J].Appl Math Comp,1989,32:169-183.
  • 3HSU S B,WALTMAN P.On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[J].SIAM J Appl Math,1993,53 (4):1 026-1 044.
  • 4WU Jian-hua.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Anal,2000,39(7):817-835.
  • 5FIGUEIREDO D G,GOSSEZ J P.Strict monotonicity of eigenvalues and unique continuation[J].Commun Part Diff Eq,1992,17:339-346.
  • 6SCHAEFER H H.Topological Vector Spaces[M].New York:Macmillan,1996.
  • 7AZIZ-ALAOUI M A,DAHER O M.Boundness and global stability for a predator-prey model with modified Leslie-Grower and Holling-type Ⅱschemes[J].Appl Math Lett,2003,16:1 069-1 075.
  • 8DU Yi-hong.A diffusive predator-prey model in heterogeneous environment[J].J Differential Equations,2004,203:331-364.
  • 9PENG Rui,WANG Ming-xin.On multiplicity and stability of positive solutions of a diffusive prey-predator mode[J].J Math Anal Appl,2006,316:256-268.
  • 10查淑玲,李艳玲,杨秀香.一类反应扩散方程组混合问题正解的存在性[J].西北大学学报:自然科学网络版,2005,3(8):1-6.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部