期刊文献+

多尺度有限元法在地下水拟三维数值模拟中的应用 被引量:8

Application of Multi-scale Finite Element Method in Quasi Three-dimensional Simulation of Groundwater Flow
下载PDF
导出
摘要 建立基于多尺度有限单元法的拟三维数学模型,模拟非均质多孔介质中的三维地下水流问题。根据多孔介质中区域饱和-非饱和水分运动的特征,将三维流动转化为拟三维流动模型。对参数水平方向渐变的非均质多孔介质中的三维地下水流用多尺度有限单元法和传统有限单元法进行了计算,结果表明在模拟非均质多孔介质中的三维地下水流问题时,多尺度有限单元法比传统有限单元法有效,既节省计算量又有较高的精度。 The multi-scale finite element method is applied in the 3-D groundwater flow simulation problems in heterogeneous porous media. Based on the pattern of water flow in large scale unsaturated and saturated zones, the 3-D groundwater flow is studied with a quasi 3-D model. The 3-D groundwater flow of heterogeneous porous media with gradual parameter variance in the horizontal direction is simulated by the multi-scale finite element method and traditional FEM. The calculation results show that the proposed method is better than the traditional FEM not only in calculation speed but also in accuracy for the simulation of the 3-D groundwater flow of heterogeneous porous media.
出处 《中国农村水利水电》 北大核心 2005年第12期10-12,共3页 China Rural Water and Hydropower
基金 国家自然科学基金资助项目(50379042 50239090)
关键词 多尺度有限单元法 非均质 多孔介质 拟三维模型 multi-scale finite element method heterogeneous porous media quasi three-dimensional model
  • 相关文献

参考文献6

二级参考文献25

  • 1[1]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,1997,134:169-189.
  • 2[2]Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].Math. Comput., 1999,68(227):913-943.
  • 3[3]Cruz M E, Petera A. A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media [J]. Int. J. Numer. Methods Eng., 1995,38:1087-1121.
  • 4[4]Dykaar B B, Kitanidis P K. Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach:1.method [J]. Water Resources Research,1992,28(4):1155-1166.
  • 5[5]Durlofsky L J. Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media [J]. Water Resources Research,1992,28:1791-1800.
  • 6[6]McCarthy J F. Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media [J]. Transport in Porous Media, 1995,19:123-137.
  • 7[7]Babuska I, Szymczak W G. An error analysis for the finite element method applied to convection-diffusion problems [J]. Comput. Methods Appl. Math. Engrg., 1982,31:19-42.
  • 8[8]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J].SIAM J. Numer. Anal., 1983,20:510-536.
  • 9[9]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J. Numer. Anal., 1994,31:945-951.
  • 10Hantush M S, Jacob C E. Nonsteady radial flow in an infinite leaky aquifer[J].EOS Transaction American Geopysical Union, 1955, 36: 96-100.

共引文献81

同被引文献67

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部