摘要
将弹性薄板弯曲问题归化成弱奇异的边界积分方程,它避免了传统的边界无法中的柯西主值(CPV)积分和HadamardFinite-Parts(HFP)积分的计算.在边界量采用常元插值(配点法)情形,对其实现数值解的过程建立一种框架系统.
The conventional boundary integral equation(BIE), which is generally expressed in terms of singular integrals in the sense of the Causchy Principal Value(CPV),and the derivative BIE, which is similarly expressed in terms of hypersingular integral in the sense of the Hadamard Finite-Part(HFP), can both be written as weakly singular integral equation.A systematic approach for circumventing numerical solutions is produced by using collocation point methods.All these suggest that the practice of calculating CPV or HFV(for boundary integral)is unnecessary in the BEM.
出处
《大连理工大学学报》
CAS
CSCD
北大核心
1996年第1期13-19,共7页
Journal of Dalian University of Technology
关键词
弯曲
薄板
弹性
边界元
边界积分方程
bending thin plates elasticity
boundary element/weakly singular boundary integral equation