期刊文献+

极大熵准则下n人非合作条件博弈的期望Nash均衡 被引量:6

Nash Equilibrium in Expectation of n-person Non-cooperative Condition Games under Greatest Entropy Criterion
下载PDF
导出
摘要 设每个局中人的纯策略空间都是实数集上的Bore l集,在实数集上有m个确定的L ebesgue可测集,并存在从这n个纯策略空间的笛卡尔乘积到实数集的m个n元Bore l函数。这m个Bore l函数在对应L ebesgue可测集下的逆像构成这n个纯策略空间的笛卡尔乘积的一个划分,并且每n-1个纯策略空间的笛卡尔乘积都具有有限正L ebesgue测度。纯策略空间的笛卡尔乘积的不同分块中的纯局势一般具有不同的博弈结果。每个局中人的效用都是自己所选纯策略的一元函数。在极大熵准则是每个局中人的共同知识的条件下,我们得到了求这类博弈的期望意义下的N ash均衡点的方法.给出这种N ash均衡点的存在定理和可交换定理。最后给出一个应用例子。 Let every player's pure strategy space be a Borel set on real numbers set R. There are m fixed Lebesgue measurable sets on R, and there are rn Borel functions of n-variables from Cartesian product of n the pure strategy spaces to R. All the inverse image formed by those Borel functions under corresponding Lebesgue measurable sets generate a partition of the Cartesian product. Let Cartesian product of any n-1 spaces of pure strategies have finite positive Lebesgue measure. Pure situations in different blocks of the Cartesian product have different game results, generally. Every player's utility is a real function of pure strategy he using. Suppose greatest entropy criterion is every player's common knowledge. In this paper, we give a method of finding Nash equilibrium points in expectation. And give existence theorem and commutative theorem of Nash equilibrium points in expectation. Finally, we give an example.
出处 《系统工程》 CSCD 北大核心 2005年第11期108-111,共4页 Systems Engineering
基金 国家自然科学基金资助项目(78970025) 江苏省高校自然科学研究计划项目(05KJD110027)
关键词 n人非合作条件博弈 极大熵准则 Lebesgue可测集 Borel函数 期望Nash均衡点 n-person Non-cooperative Condition Game Greatest Entropy Criterion Lebesgue Measurable Set Borel Function Nash Equilibrium Point in Expectation
  • 相关文献

参考文献9

  • 1Jaynes E T.Information theory and statistical mechanics[J].Physical Review,1957,106(4):620~630.
  • 2Jaynes E T.Prior probabilities[J].IEEE Transactions on systems,Science,and Cybernetics,1968,SSC-4,227.
  • 3Smith S A.A derivation of entropy and the maximum entropy criterion in the context of decision problems[J].IEEE Transactions on systems,Man,and Cybernetics,SMC-4,157.
  • 4张瑞清,邱菀华.决策分析中一类极大熵问题的求解算法与应用[J].系统工程理论与实践,1996,16(11):39-43. 被引量:7
  • 5Schelling T.The strategy of conflict[M].Harvard University Press,1960.
  • 6Selten R.Spieltheoretische Behandlung eines Oligopolmodells mit Nachfagetragheit[J].Zeitschrift fur die gesamte Staatswissenschaft,1965,12:301~324.
  • 7Selten R.Re-examination of the perfectness concept for equilibrium points in extensive games[J].International Journal of Game,1975,4:25~55.
  • 8Selten R.The CHAIN-store paradox[J].Theory and Decision,1978,9(April):127~129.
  • 9姜殿玉,张盛开,丁德文.矩阵对策的Neumann-Shannon对策解[J].系统工程,2005,23(7):17-21. 被引量:3

二级参考文献6

  • 1李怀祖,决策理论导引,1993年
  • 2陈--,决策分析,1987年
  • 3Von Neumann J,Morgenstern O. Theory of games and economic behaviour[M ]. Princeton: Princeton University Press,1944 .
  • 4Thomas L C. Games,theory and applications[M]. Chichester: Ellis Horwood Limited,1984 .
  • 5Shannon C E. A mathematical theory of communication[J]. Bell Sys. Tech. Journa l, 1948, 27:379~423,623~656 .
  • 6姜殿玉,张盛开.矩阵对策上的计策问题及其实例[J].系统工程理论与实践,2002,22(12):26-32. 被引量:12

共引文献8

同被引文献71

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部