期刊文献+

In_xGa_(1-x)N/GaN应变量子点中激子的结合能 被引量:1

The Binding Energy of Exciton Confined in In_xGa_(1-x)N/GaN Strained Quantum Dots
下载PDF
导出
摘要 利用有效质量方法和变分原理,考虑内建电场效应和量子点的三维约束效应,研究了In xGa1-xN/GaN应变量子点中的激子结合能随量子点结构参数和量子点中In含量x的变化规律.结果表明,随着量子点高度L和半径R的增加,结合能降低,随着量子点中In含量的增加,激子的结合能增大.对给定体积的量子点,激子结合能存在一最大值,此时电子、空穴被最有效的约束在量子点内.对不同体积的量子点,最大值的位置在量子点高度L=1.7nm附近取得. Within the framework of effective- mass approximation, we investigate the binding energy of exciton confined in InxGa1- xN/GaN strained quantum dots by means of variational approach. The numerical results show that: (1)When the height and the radius of QDs are increased the binding energy is reduced, and when In content is increased the binding energy is also increased; (2) The exciton binding energy is sensitive to the shap of the QD for a definite volume. There is a maximum in the binding energy, where the electrons and holes are the most efficiently confined in the QDs. The maxima are obtained at L = 1.7 nm for the QDs with the different volume.
出处 《淮北煤炭师范学院学报(自然科学版)》 2005年第4期21-25,共5页 Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
关键词 InxGa1-xN/GaN 量子点 激子结合能 InxGa1- xN/GaN quantum dots exciton binding energy
  • 引文网络
  • 相关文献

参考文献17

  • 1[1]Hirayama H,Tanaka S,Ramvall P,et al.Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces[J].Appl Phys Lett,1998,72(14):1 736-1 738.
  • 2[2]Tachibana K,Someya T,Arakawa Y.Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition[J].Appl Phys Lett,1999,74(3):383-385.
  • 3[3]Wang J,Nozaki M,Lachab M,et al.Metalorganic chemical vapor deposition selective growth and characterization of InGaN quantum dots[J].Appl Phys Lett,1999,75(7):950-952.
  • 4[4]Narukawa Y,Kawakami Y,Funato M,et al.Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm[J].Appl Phys Lett,1997,70(8):981-983.
  • 5[5]Tachibana K,Someya T,Ishida S,et al.Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature[J].Appl Phys Lett,2000,76(22):3 212-3 214.
  • 6[6]Moriwaki O,Someya T,Tachibana K,et al.Narrow photoluminescence peaks from localized states in InGaN quantum dot structures[J].Appl Phys Lett,2000,76(17):2 361-2 363.
  • 7[7]Grandjean N,Damilano B,Massies J,et al.Enhanced luminescence effiency due to exciton localization in self-assembled InGaN/GaN quantum dots[J].Solid State Communications,2000,113(9):495-498.
  • 8[8]Shi J J,Gan Z Z.Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots[J].J Appl Phys,2003,94(1):407-415.
  • 9[9]Chang K,Peeters F M.Bright-to-dark exciton transition in symmetric coupled quantum wells induced by in-plane magnetic field[J].Phys Rev B,2001,63:153307-(1-4).
  • 10[10]Li S S,Xia J B,Yuan Z L.Effective-mass theory for InAs/GaAs strained couple quantum dots[J].Phys Rev B,1996,54:11 575-11 581.

二级参考文献17

  • 1Perlin P,Gorczyca I,Christensen N E,et al. Pressure studies of gallium nitride: crystal growth and fundamental electronic properties. Phys Rev B, 1992,45 (23): 13307.
  • 2Takeuchi T,Amano H,Akasaki I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells. Jpn J Appl Phys,2000,39(2A) :413.
  • 3Yamaguchi M,Yagi T,Azuhata T, et al. Brillouin scattering study of gallium nitridies: elastic stiffness constants. J PhysCondens Matter,1997,9(1) :241.
  • 4Drechsler M,Hofmann D M,Meyer B K,et al. Determination of the conduction band electron effective mass in hexagonal GaN. Jpn J Appl Phys,1995,34(9B) :L1178.
  • 5Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN. Phys RevB,1995,52(11) :8132.
  • 6Widmann F,Daudin B,Feuillet G, et al. Growth kinetics and optical properties of self-organized GaN quantum dots. J Appl Phys, 1998,83(12): 7618.
  • 7Widmann F,Simon J,Daudin B,et al. Blue-light emission from GaN self-assembled quantum dots due to giant piezoelectric effect. Phys Rev B,1998,58(24) :R15989.
  • 8Ramvall P,Tanaka S,Nomura S,et al. Observation of confine ment-dependent exciton binding energy of GaN quantum dots. Appl Phys Lett, 1998,73 (8): 1104.
  • 9Ramvall P, Riblet P, Nomura S, et al. Optical properties of GaN quantum dots. J Appl Phys, 2000,87 (8): 3883.
  • 10Tanaka S,Lee J S,Ramvall P,et al. A UV light-emitting di ode incorporating GaN quantum dots. Jpn J Appl Phys,2003,42(8A) :L885.

共引文献16

同被引文献13

  • 1戴宪起,黄凤珍,郑冬梅.Al含量对GaN/Al_xGa_(1-x)N量子点中激子态的影响[J].Journal of Semiconductors,2005,26(4):697-701. 被引量:17
  • 2Kayanuma Y.Wannier exciton in microcrystals[J].Solid State commun,1986,59:405-408.
  • 3Nair S V,Sinha S,Rustagi K C.Quantum size effects in spherical semiconductor microcrystals[J].Phys Rev B,1987,35(8):4098-4101.
  • 4Garnett W B.Excitons in quantum boxes:Correlation effect and quantum confinement[J].Phys Rev B,1988,37(15):8763-8773.
  • 5Lo C F,Sollie R.Mass dependence of ground-state properties of wannier exciton in a quantum dot[J].Solid State Commun,1991,79:775-778.
  • 6Le Goff S and Stébé B.Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors[J].Phys Rev B,1993,47:1383-1390.
  • 7Tong San Koh,Yuan Ping Feng,Xin Xu,et al.Excitons in semiconductor quantum discs[J].J Phys:Condensed Matter,2001,13:1485-1498.
  • 8Shi J J,Gan Z Z.Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots[J].J Appl Phys,2003,94(1):407-415.
  • 9Shi J J.Exciton states and interband optical transitions in InGaN quantum dots[J].Solid State Commun,2002,124:341-345.
  • 10Jiang H T,Minsky M L.Photoluminescence and photoluminescence excitation spectra of In0.2Ga0.8N/GaN quantum wells:comparison between experimental and theoretical studies[J].IEEE J Quan Elec,1999,35:1483-1490.

引证文献1

二级引证文献1

;
使用帮助 返回顶部