期刊文献+

基于混沌优化算法的支持向量机参数选取方法 被引量:55

Selection of SVM Parameters Using Chaos Optimization Algorithms
下载PDF
导出
摘要 支持向量机(SVM)的参数取值决定了其学习性能和泛化能力.对此,将SVM参数的选取看作参数的组合优化,建立组合优化的目标函数,采用变尺度混沌优化算法来搜索最优目标函数值.混沌优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌优化算法是选取SVM参数的有效方法,应用到函数逼近时具有优良的性能. Approporiate parameters are very crucial to support vector machines (SVM) learning results and generalization ability. The selection problem of SVM parameters is considered as a compound optimization problem. Then objective function of optimization problem is set and a mutative scale chaos optimization algorithm is employed to search optimal objective function. Chaos optimization algorithm is global search method and it need not to consider SVM dimensionality and complexity. Simulations show that the proposed method is an effective approach for parameter selection and the good performance for function approximation is obtained.
出处 《控制与决策》 EI CSCD 北大核心 2006年第1期111-113,117,共4页 Control and Decision
基金 国家自然科学基金项目(60375001) 高校博士点基金项目(20030532004)
关键词 机器学习 支持向量机 混沌优化 参数选取 Machine learning Support vector machines (SVM) Chaos optimization Parameters selection
  • 相关文献

参考文献7

二级参考文献34

  • 1郝柏林.从抛物线谈起-混沌动力学引论[M].上海科技教育出版社,1995.1-20.
  • 2Vapnik Vladimir N. The Nature of Statistical Learning Theory [M]. Springer-Verlag, New York, Inc, 2000.
  • 3Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition[M]. Kluwer Academic Publishers, Boston, 1999.
  • 4Joachime T. Estimating the Generalization Performance of a SVM Efficiently[M]. Informatik LSV Ⅲ, University Dortmund, 2001.
  • 5董春曦 饶鲜 杨绍全.支持向量机推广能力估计方法综述[A].第一届全国人工智能基础学术会议,2002..
  • 6Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules[J]. Enginering Cybernetics, 1967,3:98-109.
  • 7Murphy P M, Aha Irvine D W. CA: University of California,Department of Information and Computer Science [ EB/OL ].http://www. ics. uci. edu/~ mlearn/MLRepository. html, 1994.
  • 8[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 9[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 10[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.

共引文献429

同被引文献514

引证文献55

二级引证文献326

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部