期刊文献+

Sign-LMS盲最大似然估计算法的研究 被引量:1

The Study on Blind Sign-LMS MLSE Algorithm
下载PDF
导出
摘要 简要阐述了Sign-LMS盲最大似然估计算法的基本原理。通过计算机仿真试验,在典型电话信道,对称信道以及普通信道中,对该算法与传统的LMS盲最大似然估计算法性能作了比较,并证明了该算法在收敛速度、均方误差等方面均优于传统算法。从理论上证明了该算法的复杂度,但是该算法的简单是以牺牲稳态性能为代价的,并提出了今后Sign-LMS盲最大似然估计算法的研究方向———如何减少稳态剩余误差。 The principle of blind Sign LMS MLSE algorithm is analyzed in the paper. The computer simulation showed the blind Sign-LMS MLSE algorithm is superior to conditional blind LMS MLSE algorithm in convergence speed and mean square error in typical telephone channel, symmetric channel and common channel, Theoretically the complexity of the algorithm has been proved,but the algorithm is simple at the cost of stable mean square error. How to reduce stable mean square error is the research direction of blind Sign-LMS MLSE algorithm.
作者 陈星 张立毅
出处 《太原理工大学学报》 CAS 北大核心 2006年第1期94-96,共3页 Journal of Taiyuan University of Technology
基金 山西省自然科学基金资助项目(20051038)
关键词 盲均衡 Sign-LMS盲最大似然估计 VITERBI blind Equalization blind Sign-LMS MLSE Viterbi
  • 相关文献

参考文献5

二级参考文献17

  • 1徐金标,葛建华,王新梅.一种新的盲均衡算法[J].通信学报,1995,16(3):78-81. 被引量:26
  • 2[1]E Eweda. Analysis and Design of a Signed Regressor LMS Algorithm for Stationary and Nonstationary Adaptive Filtering with Correlated Gaussian Data. IEEE,Transactions on Circuits and System. 1990,37 (11):1367~1374.
  • 3[2]Martin T Hagan, Howard B Demuth, Mark Beale.Neural Network Design. PWS Publishing Company. 1996.
  • 4[3]Joseph Thomas. A Delayed Error Least Mean Squares Adaptive Filtering Algorithm and its Performance Analysis.IEEE Digital Signal Processing. 1996, 12(5), 386~389.
  • 5[4]A Gersho. Adaptive Filtering with Binary Reinforcement.IEEE Trans. 1984, 30(2), 191~199.
  • 6[5]C P Kwong, Dual Sign Algorithm for Adaptive Filtering,IEEE Trans, 1986,34 (12), 1272~1275 .
  • 7[6]E Eweda. Comment on Convergence Analysis and Design of an Adaptive Filter with Finite-Bit Power-of-Two Quantized Error. IEEE Trans.,Circuits and systems Ⅱ ,1995,42(7).
  • 8[7]S H Cho and V J Mathews. Tracking analysis of the sign algorithm in nonstationary environments. IEEE Trans,Acoust., Speech, Signal Processing, 1990 , 38 (12):2046~2057.
  • 9[8]E Eweda Transient Performance Degradation of the LMS,RLS, Sign, Signed Regressor, and Sign Sign Algorithms with Data Correlation IEEE Trans,1999, 8 (46):1055~1062.
  • 10GODARD D N. Self recovering equalization and carrier tracking in twodimensinal system [J]. IEEE Trans Commun. , 1980, COM - 28: 1867一1875.

共引文献14

同被引文献4

  • 1LOCTWASSANA W, PUNCHALARD R, LORSAWAT- SIRI A, et al. Adaptive howling suppressor in an audio amplifier system[C]//IEEE Asia-Pacific Conference on Communications, APCC. [S.l.] : IEEE Press, 2007 : 445- 448.
  • 2LEOTWASSANA W, PUNCHALARD R, SILAPHAN W. Adaptive howling canceller using adaptive IIR notch filter: simulation and implementation[C]//IEEE International Conference on Neural Networks and Sig- nal Processing, ICNNSP'03. [S,l.]: IEEE Press, 2003 : 848-851.
  • 3CHUMCHU P, PUNCHALARD R, BENJANGKAPRA- SERT C. Simplify adaptive IIR notch filter based on least mean p-power error criterion[C]//IEEE Asia-Pacific Conference on Circuits and Systems-Proceedings. [S.l.] : IEEE Press, 1998 : 335-338.
  • 4蔡以松.声反馈抑制技术及应用[J].电声技术,2003,27(12):27-29. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部