期刊文献+

WO_3/H_2O_2光催化氧化法处理草浆纸厂废水的研究 被引量:6

Effect factors and kinetics on photocatalysis treating pulp wastewater by WO_3 catalyst
下载PDF
导出
摘要 讨论了光催化氧化处理造纸废水的影响因素,如催化剂的用量、pH值、过氧化氢的用量、光照时间等,并通过正交试验,得出了WO3作为光催化剂处理草浆废水时的影响因素次序是:H2O2的用量>WO3的用量>光照时间>pH值。确定了反应最佳工艺条件为:pH=6.00,H2O2加入量为0.24mL,WO3用量为3g/L,光照时间为4h,出水COD值达到排放标准。同时通过对造纸废水光催化氧化动力学级数的研究发现,光催化技术处理造纸废水的反应符合一级反应动力学。 The paper aims to introduce the authors' study on the factots influencing photocatalysis oxidation process, such as the amount of photocatalyst, dosage of H2O2, pH value, illuminating time etc. for such factors are intricate and interrelated and therefore proves to be the preconditions to the industrial application. As a matter of fact, orthogonal experimental method helps to find the order of main influential factors of photocatalysis when pulp and paper effluent are treated. The paper also studied the dynamic nature of the reaction. The result shows that the amount of H2O2 is the best domain factor, with the amount of WO3, the radiant time, and the pH value followed. The experimental data help to find the optimal conditions as follows: pH value should be 6.00, the amount of catalyst is 0.03 g, with the dosage of H2O2 being 0.24 mL and illumination time 4 h. In addition, the dynamics of this reaction is a single order reaction. The conclusion is in conformity with the photocatalysis oxidation in simulated treating of single component wastewater.
出处 《安全与环境学报》 CAS CSCD 2006年第1期77-79,共3页 Journal of Safety and Environment
基金 徐州师范大学重点科研项目(02AXW008)
关键词 环境工程 造纸废水 光催化 WO3 正交实验 动力学 environmental engineering paper-making wastewater photocatalysis oxidation WO3 orthogonal experimentdesign kinetics
  • 引文网络
  • 相关文献

参考文献10

二级参考文献71

  • 1贺北平,王占生,张锡辉.半导体光催化氧化有机物的研究现状及发展趋势[J].环境科学,1994,15(3):80-83. 被引量:84
  • 2杨润昌,周书天.硫酸对草浆造纸黑液催化作用的研究[J].环境科学,1994,15(5):46-48. 被引量:11
  • 3孔令仁,陈曦,杨曦.附着态半导体光催化剂光解可溶性染料的研究[J].环境科学学报,1996,16(4):406-411. 被引量:48
  • 4B1ake D. M. Bib1iography of work on the photocata1ytie remova1 of hazardous compounds from water and air. Nationa1 Renewa1 Energy Laboratory, 1994.
  • 5O. Legrini, E. O1iveros, A, M. Braun. Photochemica1 process for water treatment. Chem. Rev., 1993,93:671-698.
  • 6K. Vinodgopa1, et a1. Enhanced rates of photocata1ytic degradation of an Azo dye using SnO2/TiO2 coup1ed semiconductor thin fi1ms. Environ. Sci. Techno1., 199S,29(3):841-845.
  • 7Enrico B., Nick S. ,Gary E., et a1. Light-induced reduction of rhodium(Ⅲ) and pa11adium(Ⅱ ) on the titanium dioxide dispersions and the se1ective photochemica1 separation and recovery of go1d (Ⅲ) p1atium ( IV ), and rhodium (Ⅲ) in ch1oride media. Inorg. Chem., 1986, 25(25):4499-4503.
  • 8Hoffmann M. N., Martins S.T., Choi W., et a1. Enviromenta1 app1ication of semi conductor photocata1ysis. Chem. Rev.,1995,95 : 69-96.
  • 9Steven N. Frank, A11en J. Bard. Semiconductor e1ectrodes . 12 .Photoassisted oxidations and photoe1ectrosynthesis at po1ycrysta1]ine TiO2 e1ectrodes. J. Am. Chem. Soc. ,1977, 99(14) :4667-4675.
  • 10Fujishima A., Honda K. E1ectrochemica1 poto1ysis of water at asemiconductor e1ectrode. Nature, 1972,238 (5338) : 38-45.

共引文献243

同被引文献176

引证文献6

二级引证文献24

;
使用帮助 返回顶部