期刊文献+

基于二叉树和SVM的指纹分类 被引量:4

Research of fingerprint classification combined by binary tree and SVM
下载PDF
导出
摘要 为解决支持向量机(Support Vector Machine,SVM)进行指纹多类分类存在困难的问题,在应用二叉树理论的基础上,提出了一种新型的指纹分类方法.该算法首先使用二叉树进行多类决策,将原始分类数据分解成3个二类分类问题,然后利用SVM进行二类分类,使3个分类超平面得到优化.两者的有机结合,充分发挥了SVM在二类分类问题方面相对于其它方法的优势,从而使算法的推广能力有较大提高,总的分类正确率可达97.9%.实验结果证明,二叉树构造多类框架将指纹多类分类问题分解成3个二类分类器系统,不仅可以有效的提高指纹分类的效率,还充分发挥了SVM分类器解决二类分类问题的优势. In order to solve the difficulties existed in fingerprint multi-classification for Support Vector Machine, this paper proposes a novel fingerprint classification method based on binary tree theory. This algorithm uses binary tree to construct the multi-class frame by decomposing the problem into three 2-class classification problems, then uses Support Vector Machine optimizing the three hyperplanes. The combination of the two exerted the superiority for 2-class classification of SVM over other algorithms completely, the generalization ability has improved greatly and the total accuracy for the new sample is 97.9%. Experimental results show that the fingerprint multi-class problem is divided into three 2-class classifier system by using binary tree to construct the multi-class frame, which not only can improve the efficiency of fingerprint classification but also exerts the superiorities of SVM classifier for two-class classification problem sufficiently.
出处 《山东大学学报(工学版)》 CAS 2006年第1期121-124,共4页 Journal of Shandong University(Engineering Science)
基金 山东省重点攻关项目(031080134)
关键词 指纹分类 二叉树 支持向量机 多类分类 fingerprint classification binary tree SVM multi-classification
  • 相关文献

参考文献10

  • 1LEONG CHUNG ERN,GHAZALI SULONG.Fingerprint classification approaches:an overview[A].International Symposium on Signal Processing and its Applications(ISSPA)[C].Kuala Lumpur,Malaysia:the IEEE Press,2001.347-350.
  • 2SHAH SHESHA SASTRY.Fingerprint classification using a feedback-Based line detector[J].IEEE Transactions on Systems,Man and Cybernetics(Part B),2004,34(1):85-94.
  • 3王崇文,李见为,陈为民.基于HMM和SVM的指纹分类方法[J].电子与信息学报,2003,25(11):1488-1493. 被引量:8
  • 4BOTTOU L,CORTES C,DENKERETAL.Comparison of classifier methods:A case study in handwriting digit recognition[A].International Conference on Pattern Recognition[C].Jerusalem,Israel:IEEE Computer Society Press,1994.77-87.
  • 5FRIENDMAN J H.Another approach to polychotomous classification[R].Technical Report.Department of Statistics,Stanford University,1997.
  • 6PLATT J C,CRISTIANINI N,SHAWE TAYLOR J.Large margin DAGs for multi-class classification[A].Advances in Neural Information Processing Systems[C].MIT:the MIT Press,2000.547-553.
  • 7BOSER B E,GUYON I M,VAPINK V.A training algorithm for optimal margin classifiers[A].Proceeding of the 5^th Annual Workshop on Computational Learning Theory[C].Pittsburgh:the IEEE Press,1992.144-152.
  • 8VAPINK V.Statistical Learning Theory[M].New York:the Wiley Press,1998.
  • 9CORTES C,VAPINK V.Support vector networks[J].Machine Learning,1995,20(3):273-297.
  • 10唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50

二级参考文献7

  • 1V.N.Vapnik著 张学工译.统计学习理论的本质[M].清华大学出版社,2000.第2章.
  • 2Knerr S, Personnaz L, Dreyfus G.Single-layer learning revisited: A stepwise procedure for building and training a neural network[C].In:J Fogelman ed. Neurocomputing: Algorithms, Architectures and Applications,New York: Springer-Verlag, 1990.
  • 3Bottou L,Cortes C,Denker J et al. Comparison of classifier methods:A case study in handwritten digit recognition[C].In:Proc of the International Conference on Pattern Recognition,1994:77~87.
  • 4Platt J,Cristianini N,Shawe-Taylor J.Large margin DAG's for multiclass classification[C].In:Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2000; 1 (12): 547~553.
  • 5Sungmoon C,Sang H O,Soo-Young L.Support Vector Machines with Binary Tree Architecture for Multi-Class Classification[J].Neural Information Processing-Letters and Reviews, 2004; 2 (3): 47~51.
  • 6Michie D ,Spiegelhalter D ,Taylor C.Machine Learning ,Neural and Statistical Classification[DB].http://www.liacc.up.pt/ML/statlog/datasets. html.
  • 7马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272-276. 被引量:78

共引文献56

同被引文献39

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部