期刊文献+

变换图G^(--+)的超边连通性 被引量:4

Super edge-connectivity of transformation graph G^(——+)
下载PDF
导出
摘要 如果λ(G)=δ(G),则称图G是极大边连通的;如果G的最小边割只能分离G的一个孤立点,则称图G是超边连通的.证明了对所有的有限图G,其变换图G--+都是极大边连通的,G--+是超边连通的当且仅当G不同构于K1,2也不同构于K2∪K1. A graph G is called maximally edge-connected if λ (G) =δ(G) and it is said to be super edge-connected if every minimal edge-cut-set of size δ (G) separates only one isolated point of G. It is proved that for any graph G, G^-- + is maximally edge-connected and that G^-- + is super edge-connected if and only if G is neither isomorphic to K1,2 nor K2 ∪ K1.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期123-124,共2页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10271101)
关键词 变换图 极大边连通性 超边连通性 transformation graph maximally edge-connectivity super edge-connectivity
  • 相关文献

参考文献6

  • 1Boesch F.Synthesis of reliable networks-a survey[J].IEEE Transactions on Reliability,1986,35:240-246.
  • 2Ball M O.Complexity of network reliability computation[J].Networks,1980(10):153-165.
  • 3Bauer D,Boesch F,Suffel C,et al.Connectivity extremal problems and the design of reliable probabilistic networks[J].The Theory and Application of Graph,1981(1):89-98.
  • 4吴宝音都仍,孟吉翔.全变换图的基本性质(英文)[J].数学研究,2001,34(2):109-116. 被引量:18
  • 5Bauer D,Tindell R.The connecctivity of line graphs and tatal graphs[J].Journal of Graph Theory,1982,6(2):197-204.
  • 6Bondy J A,Murty U S R.Graph theory and its applications[M].New York:Academic Press,1976.

二级参考文献8

  • 1[1]Bondy J A, Murty M R. Graph theory and Its Application, Academic Press, 1976
  • 2[2]Ales J, Bacik R. Strong elimination orderings of the total graph of a tree, Discrete Appl. Math. 1992, 39:293~295
  • 3[3]Baur D, Tindell R. The connectivity of line graphs and total graphs, J. Graph Theory 1982, 6:197~204
  • 4[4]Behzad M. Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965
  • 5[5]Behzad M, Chartrand G. Proc. Edinburgh Math. Soc. 1966/67, 15:117~120
  • 6[6]Iqbalunnisa T, Janakiraman N, Srinivasan N. Note on iteralted total graphs, J. Indian Math. Soc. New Ser. 1990, 55:67~71
  • 7[7]Gudagudi B R, Stewart M J. On n-th subdivision graphs, J. Karmatak Univ. Sci. 1974, 19:282~288
  • 8[8]Van Rooij A C M, Wilf H S. The interchange graph of a finite graph, Acta Mate. Acad. Sci. Hungar. 1965, 16:163~169

共引文献17

同被引文献10

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部