期刊文献+

基于层叠隐马尔可夫模型的中文命名实体识别 被引量:160

Chinese named entity identification using cascaded hidden Markov model
下载PDF
导出
摘要 提出了一种基于层叠隐马尔可夫模型的中文命名实体一体化识别方法,旨在将人名识别、地名识别以及机构名识别等命名实体识别融合到一个相对统一的理论模型中。首先在词语粗切分的结果集上采用底层隐马尔可夫模型识别出普通无嵌套的人名、地名和机构名等,然后依次采取高层隐马尔可夫模型识别出嵌套了人名、地名的复杂地名和机构名。在对大规模真实语料库的封闭测试中,人名、地名和机构识别的F-1值分别达到92.55%、94.53%、86.51%。采用该方法的系统ICTCLAS在2003年5月SIGHAN举办的第一届汉语分词大赛中名列前茅。 An approach for Chinese named entity identification using cascaded hidden Markov model, which aimed to incorporate person name, location name, organization name recognition into an integrated theoretical frame was presented. Simple named entity was recognized by lower HMM model after rough segmentation and complex named entity such as person name, location name and organization name was recognized by higher HMM model using role tagging. In the test on large realistic corpus, its F-1 measure of person name, location name and organization name was 92.55%, 94.53% and 86.51%. In the first international word segmentation hakeoff held by SIGHAN (the ACL Special Interest Group on Chinese Language Processing) in 2003. ICTCLAS, which name entity identification base on this model achieved excellent score.
出处 《通信学报》 EI CSCD 北大核心 2006年第2期87-94,共8页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(G1998030507-4 G1998030510) 计算所领域前沿青年基金资助项目(20026180-23) 国家自然科学基金资助项目(60272084) 北京市教育委员会科技发展计划重点项目(KZ200310772013)~~
关键词 命名实体识别 角色标注 ICTCLAS namedentityidentification role tagging ICTCLAS
  • 相关文献

参考文献12

  • 1季姮,罗振声.基于反比概率模型和规则的中文姓名自动辨识系统[A].自然语言理解与机器翻译[C].北京:清华大学出版社,2001.123-128.
  • 2何燕.基于单字词转移概率的未登录词识别[A].自然语言理解与机器翻译[C].北京:清华大学出版社,2001 141-146.
  • 3吕雅娟,赵铁军,杨沐昀,于浩,李生.基于分解与动态规划策略的汉语未登录词识别[J].中文信息学报,2001,15(1):28-33. 被引量:43
  • 4王宁,葛瑞芳,苑春法,黄锦辉,李文捷.中文金融新闻中公司名的识别[J].中文信息学报,2002,16(2):1-6. 被引量:51
  • 5张艳丽,黄德根等.统计和规则相结合的中文机构名称识别[A].自然语言理解与机器翻译[C].北京:清华大学出版社,2001.233-239.
  • 6罗智勇 宋柔.现代汉语自动分词中专名的一体化、快速识别方法[A]..ICCC,Singapore[C].,2001.11..
  • 7SUN J,GAO J F,ZHANG L,et al.Chinese named entity identification using class-based language model[A].Proc of the 19th International Conference on Computational Linguistics[C].Taipei:Morgan Kauffmann Press,2002.967-973.
  • 8刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 9张华平,刘群.基于角色标注的中国人名自动识别研究[J].计算机学报,2004,27(1):85-91. 被引量:104
  • 10YU H,ZHANG H,LIU Q.Recognition of Chinese organization name based on role tagging[A].Advances in Computation of Oriental Languages[C].Beijing:Tsinghua University Press,2003.79-87

二级参考文献38

  • 1孙茂松,黄昌宁,高海燕,方捷.中文姓名的自动辨识[J].中文信息学报,1995,9(2):16-27. 被引量:87
  • 2H Y Tan. Chinese place automatic recognition research. In: C N Huang, Z D Dong, eds. Proc of Computational Language.Beijing: Tsinghua University Press, 1999
  • 3Zhang Huaping, Liu Qun, Zhang Hao, et al. Automatic recognition of Chinese unknown words recognition. First SIGHAN Workshop Attached with the 19th COLING, Taipei, 2002
  • 4S R Ye, T S Chua, J M Liu. An agent-based approach to Chinese named entity recognition. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 5J Sun, J F Gao, L Zhang, et al. Chinese named entity identification using class-based language model. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 6Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc of IEEE, 1989,77(2): 257~286
  • 7Shai Fine, Yoram Singer, Naftali Tishby. The hierarchical hidden Markov model: Analysis and applications. Machine Learning,1998, 32(1): 41~62
  • 8Richard Sproat, Thomas Emerson. The first international Chinese word segmentation bakeoff. The First SIGHAN Workshop Attached with the ACL2003, Sapporo, Japan, 2003. 133~143
  • 9J Hockenmaier, C Brew. Error-driven learning of Chinese word segmentation. In: J Guo, K T Lua, J Xu, eds. The 12th Pacific Conf on Language and Information, Singapore, 1998
  • 10Andi Wu, Zixin Jiang. Word segmentation in sentence analysis.1998 Int'l Conf on Chinese Information Processing, Beijing, 1998

共引文献363

同被引文献1221

引证文献160

二级引证文献1295

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部