摘要
应用逆算符方法,给出一阶非线性电路响应的逆算符解,并以实例与四阶RungaKutta方法及其它近似方法作比较。结果表明,逆算符方法具有较高的精度。解分量之间遵循相同的运算规则,具有可推导性,易于计算机实现。本文还对一阶非线性电路方程的幂级数解法,主元迭代法以及逆算符方法作了比较分析,结果指出,逆算符方法可以得到幂级数解。
Studying the principles and component parts of mechatronics system,this paper forward the four fields:information IntFus (Integration and Fusion),energy IntFus,material IntFus,and system IntFus.Analysing and studying its integration element,IntFus rule,and sets up system quality evaluation standard:IntFus degree.It present some theory bases for mechatronics system desing and research.
出处
《机械与电子》
1996年第4期27-29,共3页
Machinery & Electronics
关键词
非线性电路
计算
数值方法
Integration and fusion of Mechatronics system Information IntFus Energy IntFus Material IntFus System IntFus IntFus rule IntFus degree.